Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

Show full item record



Permalink

http://hdl.handle.net/10138/168790

Citation

Kourtchev , I , Giorio , C , Manninen , A J , Wilson , E , Mahon , B , Aalto , J , Kajos , M , Venables , D , Ruuskanen , T , Levula , J , Loponen , M , Connors , S , Harris , N , Zhao , D , Kiendler-Scharr , A , Mentel , T , Rudich , Y , Hallquist , M , Doussin , J-F , Maenhaut , W , Bäck , J , Petäjä , T , Wenger , J , Kulmala , M & Kalberer , M 2016 , ' Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols ' , Scientific Reports , vol. 6 , 35038 . https://doi.org/10.1038/srep35038

Title: Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols
Author: Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti J.; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus
Contributor: University of Helsinki, Doctoral Programme in Atmospheric Sciences
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Forest Sciences
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
Date: 2016-10-13
Language: eng
Number of pages: 9
Belongs to series: Scientific Reports
ISSN: 2045-2322
URI: http://hdl.handle.net/10138/168790
Abstract: Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.
Subject: ALPHA-PINENE OZONOLYSIS
MOLECULAR COMPOSITION
VOC CONCENTRATIONS
BOREAL FOREST
SCOTS PINE
SPECTROMETRY
CLIMATE
PARTICLES
EVOLUTION
IDENTIFICATION
114 Physical sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
srep35038.pdf 871.7Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record