Recurrent De Novo Dominant Mutations in SLC2SA4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number

Show full item record



Permalink

http://hdl.handle.net/10138/168837

Citation

Thompson , K , Majd , H , Dallabona , C , Reinson , K , King , M S , Alston , C L , He , L , Lodi , T , Jones , S A , Fattal-Valevski , A , Fraenkel , N D , Saada , A , Haham , A , Isohanni , P , Vara , R , Barbosa , I A , Simpson , M A , Deshpande , C , Puusepp , S , Bonnen , P E , Rodenburg , R J , Suomalainen , A , Ounap , K , Elpeleg , O , Ferrero , I , McFarland , R , Kunji , E R S & Taylor , R W 2016 , ' Recurrent De Novo Dominant Mutations in SLC2SA4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number ' , American Journal of Human Genetics , vol. 99 , no. 4 , pp. 860-876 . https://doi.org/10.1016/j.ajhg.2016.08.014

Title: Recurrent De Novo Dominant Mutations in SLC2SA4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number
Author: Thompson, Kyle; Majd, Homa; Dallabona, Christina; Reinson, Karit; King, Martin S.; Alston, Charlotte L.; He, Langping; Lodi, Tiziana; Jones, Simon A.; Fattal-Valevski, Aviva; Fraenkel, Nitay D.; Saada, Ann; Haham, Alon; Isohanni, Pirjo; Vara, Roshni; Barbosa, Ines A.; Simpson, Michael A.; Deshpande, Charu; Puusepp, Sanna; Bonnen, Penelope E.; Rodenburg, Richard J.; Suomalainen, Anu; Ounap, Katrin; Elpeleg, Orly; Ferrero, Ileana; McFarland, Robert; Kunji, Edmund R. S.; Taylor, Robert W.
Other contributor: University of Helsinki, Research Programme for Molecular Neurology
University of Helsinki, Clinicum








Date: 2016-10-06
Language: eng
Number of pages: 17
Belongs to series: American Journal of Human Genetics
ISSN: 0002-9297
DOI: https://doi.org/10.1016/j.ajhg.2016.08.014
URI: http://hdl.handle.net/10138/168837
Abstract: Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondria' respiratory chain deficiencies associated with a marked loss of mitochondria' DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondria' DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondria' DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondria' disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.
Subject: ADENINE-NUCLEOTIDE TRANSLOCATOR
PROGRESSIVE EXTERNAL OPHTHALMOPLEGIA
SUBSTRATE-BINDING SITE
ADP/ATP CARRIER
SACCHAROMYCES-CEREVISIAE
TRANSPORT MECHANISM
RESPIRATORY-CHAIN
ANT1 GENE
FUNCTIONAL-CHARACTERIZATION
BACTERIAL EXPRESSION
3111 Biomedicine
3123 Gynaecology and paediatrics
3112 Neurosciences
3124 Neurology and psychiatry
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
1_s2.0_S0002929716303391_main.pdf 2.143Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record