Long-term stability of Cu surface nanotips

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/174144

Lähdeviite

Jansson , V , Baibuz , E & Djurabekova , F 2016 , ' Long-term stability of Cu surface nanotips ' , Nanotechnology , vol. 27 , no. 26 , 265708 . https://doi.org/10.1088/0957-4484/27/26/265708

Julkaisun nimi: Long-term stability of Cu surface nanotips
Tekijä: Jansson, V.; Baibuz, E.; Djurabekova, F.
Tekijän organisaatio: Helsinki Institute of Physics
Department of Physics
Päiväys: 2016-07-01
Kieli: eng
Sivumäärä: 13
Kuuluu julkaisusarjaan: Nanotechnology
ISSN: 0957-4484
DOI-tunniste: https://doi.org/10.1088/0957-4484/27/26/265708
URI: http://hdl.handle.net/10138/174144
Tiivistelmä: Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the <110 > crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 mu s at room temperature. Moreover, the nanotips built up along the <110 > crystallographic directions were found to be significantly more stable than those oriented in the <100 > or <111 > crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.
Avainsanat: copper
kinetic Monte Carlo
surface diffusion
nanotips
MONTE-CARLO-SIMULATION
CORRECTED EFFECTIVE-MEDIUM
MOLECULAR-DYNAMICS
DISSOCIATIVE ADSORPTION
GROWTH
NANOWIRES
DIFFUSION
METALS
ENERGY
IRRADIATION
114 Physical sciences
Vertaisarvioitu: Kyllä
Tekijänoikeustiedot: other
Pääsyrajoitteet: openAccess
Rinnakkaistallennettu versio: acceptedVersion


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
1508.06870v3.pdf 9.790MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot