A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/174574

Lähdeviite

Haghighi , M , Johnson , S B , Qian , X , Lynch , K F , Vehik , K , Huang , S , TEDDY Study Grp & Knip , M 2016 , ' A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study ' , Scientific Reports , vol. 6 , 30828 . https://doi.org/10.1038/srep30828

Julkaisun nimi: A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study
Tekijä: Haghighi, Mona; Johnson, Suzanne Bennett; Qian, Xiaoning; Lynch, Kristian F.; Vehik, Kendra; Huang, Shuai; TEDDY Study Grp; Knip, Mikael
Muu tekijä: University of Helsinki, Clinicum
Päiväys: 2016-08-26
Kieli: eng
Sivumäärä: 11
Kuuluu julkaisusarjaan: Scientific Reports
ISSN: 2045-2322
URI: http://hdl.handle.net/10138/174574
Tiivistelmä: Regression models are extensively used in many epidemiological studies to understand the linkage between specific outcomes of interest and their risk factors. However, regression models in general examine the average effects of the risk factors and ignore subgroups with different risk profiles. As a result, interventions are often geared towards the average member of the population, without consideration of the special health needs of different subgroups within the population. This paper demonstrates the value of using rule-based analysis methods that can identify subgroups with heterogeneous risk profiles in a population without imposing assumptions on the subgroups or method. The rules define the risk pattern of subsets of individuals by not only considering the interactions between the risk factors but also their ranges. We compared the rule-based analysis results with the results from a logistic regression model in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Both methods detected a similar suite of risk factors, but the rule-based analysis was superior at detecting multiple interactions between the risk factors that characterize the subgroups. A further investigation of the particular characteristics of each subgroup may detect the special health needs of the subgroup and lead to tailored interventions.
Avainsanat: ASSOCIATION ANALYSIS
EPIDEMIOLOGY
STRESS
ONSET
LASSO
TEDDY
3111 Biomedicine
3121 General medicine, internal medicine and other clinical medicine
Tekijänoikeustiedot:


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
srep30828.pdf 618.2KB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot