Gynther, Antti
(Helsingin yliopisto, 2006)

The electroweak theory is the part of the standard model of particle physics that describes the weak and electromagnetic interactions between elementary particles. Since its formulation almost 40 years ago, it has been experimentally verified to a high accuracy and today it has a status as one of the cornerstones of particle physics. Thermodynamics of electroweak physics has been studied ever since the theory was written down and the features the theory exhibits at extreme conditions remain an interesting research topic even today.
In this thesis, we consider some aspects of electroweak thermodynamics. Specifically, we compute the pressure of the standard model to high precision and study the structure of the electroweak phase diagram when finite chemical potentials for all the conserved particle numbers in the theory are introduced. In the first part of the thesis, the theory, methods and essential results from the computations are introduced. The original research publications are reprinted at the end.