Browsing by Title

Sort by: Order: Results:

Now showing items 398-417 of 780
  • Nousiainen, Heidi (Helsingin yliopisto, 2011)
    This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.
  • Montesano, Marcos (Helsingin yliopisto, 2002)
  • Savolainen-Kopra, Carita (Helsingin yliopisto, 2006)
    The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.
  • Maunula, Leena (Helsingin yliopisto, 2001)
  • Suomalainen, Marjo (Helsingin yliopisto, 2014)
    Omptins are a family of conserved, integral outer membrane proteases and widely distributed within Gram-negative bacterial species. The family offers a good example of the evolution and the adaptation of a protein to novel functions and to differing pathogenic bacterial life-styles. This work investigates three different omptins: Pla of Yersinia pestis, PgtE of Salmonella enterica and OmpT of Escherichia coli. The omptin proteases differ in substrate specificity and need lipopolysaccharide (LPS) for activity. My thesis work addressed two main questions in omptin function: what is the molecular basis of the dissimilar substrate selectivity in the structurally very similar omptins; and what are the structural features in LPS that affect omptin activity. I studied the LPS dependency of omptins by expressing the proteins in bacterial cells that differ in LPS structure and by reconstituting purified, detergent-solubilized omptin protein with characterized, purified LPS molecules. Y. pestis alters its LPS structure in response to change of temperature from 20°C to 37°C, which reflects the transfer from a flea to a mammalian host. I found that the activity of Pla in cells from 20°C was very low, whereas cells from 37°C expressed high activity. I reconstituted detergent-purified His6-Pla protein with various model LPS structures and with LPSs of Y. pestis grown at different temperatures. Adding Y. pestis LPS from 37°C to the nonfunctional Pla protein induced high proteolytic activity, whereas 20°C-LPS gave very low activity, indicating that the activity of Pla is controlled by LPS. Similarly, I found that the activity of PgtE was high with rough LPS and low with smooth LPS; the difference mimics the LPS of intracellular (rough) and extracellular (smooth) S. enterica. Thus, in both bacterial species the omptin activity is controlled by the LPS type that the bacteria express during infection in mammals. I further studied the fine structure of Y. pestis LPS that affects Pla activity. This was done by reconstituting Pla activity with various structurally characterized Y. pestis and E. coli LPSs. I found that lower levels of lipid A acylation and phosphate substitution by aminoarabinose, are important for Pla activity, these features are characteristic for Y. pestis LPS from 37°C. A common and conserved feature in omptin structure is the presence of LPS-binding motif in protein barrel. Disrupting of the lipid A-binding motifs in PgtE and Pla abolished their proteolytic activity, emphasizing the importance of the LPS binding site for omptin activity. Omptins have a highly spatically conserved active center and catalytic domains but express functional heterogeneity. The omptin transmembrane barrel contains five surface-exposed loops that show slightly higher sequence variation than the transmembrane protein regions. To study the effect of loop structures in omptin proteolytic specificity, I changed OmpT of E. coli to a Pla-like enzyme by a stepwise substitution of the loop areas. The proteins were characterized by their ability to activate the human protease precursor plasminogen(Plg) to the active serine protease plasmin and to inactivate the main plasmin inhibitor, α2-antiplasmin(α2AP); both functions are important for bacterial virulence. Pla cleaves very efficiently both substrates, whereas OmpT is only poorly active with them. I showed that OmpT could be converted into a Pla-like enzyme by cumulative substitutions at the loop areas, especially the loops L3-L5 were important. The successful conversion of OmpT towards Pla indicates that the loop structures are critical for omptin activity by allowing correct recognition of the polypeptide substrate. More detailed substitution analysis was taken to identify the catalytic residues in Pla. My thesis demonstrates that the omptin proteolytic activity depends on two things: their specific interaction with LPS and the structure of their surface-exposed loops. The thesis offers an example of omptins extensive evolvability and of how they adapt to the lifestyle of their host bacterium.
  • Ekholm, Jenny (Helsingin yliopisto, 2006)
  • Tallila, Jonna (Helsingin yliopisto, 2009)
    Meckel syndrome (MKS, MIM 249000) is a severe developmental disorder that leads to death already in utero or shortly after birth. MKS diagnosis can be established by a careful ultrasound examination already at 11-14 weeks of gestation. The main features of MKS are occipital meningoencephalocele, cystic kidney dysplasia and fibrotic changes of the liver. In addition, polydactyly is frequently reported in the cases. The aim of the study was to characterize the molecular and functional defects in MKS. In this study we were able to identify two major MKS mutations in Finnish population, which cover over 90% of the cases. The first mutation is a 29 bp intronic deletion in the MKS1 gene (c.1483-7_35del) that is found in 70% of the families and the second is a C>T substitution in the coding region of CC2D2A (c.1762C>T), that is found in 20% of the MKS families. Both of these mutations result in abnormal splicing. The discovery of the disease genes has revealed that MKS is caused by primary cilia dysfunction. MKS1 gene has a conserved B9 domain, and it is found in the predicted ciliary proteome. CC2D2A protein is also found in the predicted ciliary proteome and it has a Ca2+ binding domain. The number of genes behind MKS has increased rapidly in the past years and to date, mutations have been identified in five genes (MKS1, TMEM67/MKS3, CEP290/MKS4, RPGRIP1L/MKS5 and CC2D2A/MKS6). Identification of the disease genes mutations has also revealed that MKS is an allelic disorder with other syndromes with overlapping phenotypes. Disorders that are caused by primary cilia dysfunction are collectively known as ciliopathies. Sequence analysis of all the known MKS genes in Finnish and non-Finnish families available to us, where the mutation was still unknown, revealed mutations in 14 out of the 30 families included in the study. When we collected all the reported mutations in MKS genes in different syndromes we could see that there was clearly a genotype-syndrome correlation between the mutations and the syndromes, since the same pair of mutations has never been reported in different syndromes. The basic molecular events behind MKS will not only give us information of this syndrome, but also significant novel information on early fetal development in general.
  • Siitonen, Annika (Helsingin yliopisto, 2008)
    RAPADILINO syndrome is an autosomally resessively inherited condition that belongs to a group of rare syndromes more common in Finland than in other parts of the world. RAPADILINO is characterized by pre- and postnatal growth retardation, radial ray defects, diarrhoea of unknown aetiology during chilhood, a facial resemblance with other patients and normal intelligence. In Finland, 15 patients with this condition have been found which compares with only five patients in other parts of the world. We found RECQL4 gene mutations in RAPADILINO patients and proved this syndrome to be allelic with a subgroup of Rothmund-Thomson syndrome (RTS). Later we found RECQL4 mutations in patients with Baller-Gerold syndrome (BGS). These three syndromes share clinical findings and differential diagnostics rely on poikiloderma and craniosynostosis not seen in RAPADILINO syndrome. We found five different mutations in the Finnish RAPADILINO patients. The g.2545delT mutation is the founder mutation in the Finnish population as all the patients are either homozygotes or compound heterozygotes for it. This mutation leads to the inframe skipping of exon seven from mRNA. The protein encoded by this mutant mRNA lacks the nuclear retention signal and thus leads to the mislocalization of the mutant protein. The genotype-phenotype correlation is not straightforward but it seems that RAPADILINO could be due to alteration in protein function and truncating mutations in both alleles are more common among RTS patients. RTS patients with RECQL4 mutations have an elevated risk for osteosarcoma, but their risk to develop other types of malignancies is not increased.Two Finnish RAPADILINO patients have been diagnosed with osteosarcoma, but in addition to this we have found an excess of lymphoma cases among the Finnish RAPADILINO patients. This difference between cancer types could be due to different mutations found in these syndromes. The mutation screening of the patients will help to differentiate patients who have RECQL4 mutations and thus the elevated cancer risk. Patients will benefit from the follow up since early detection of malignancies is important for the treatment.
  • Nieminen, Pekka (Helsingin yliopisto, 2007)
    Congenital missing of teeth, tooth agenesis or hypodontia, is one of the most common developmental anomalies in man. The common forms in which one or a few teeth are absent, may cause occlusal or cosmetic harm, while severe forms which are relatively rare always require clinical attention to support and maintain the dental function. Observation of tooth agenesis is also important for diagnosis of malformation syndromes. Some external factors may cause developmental defects and agenesis in dentition. However, the role of inheritance in the etiology of tooth agenesis is well established by twin and family studies. Studies on familial tooth agenesis as well as mouse null mutants have also identified several genetic factors. However, these explain syndromic or rare dominant forms of tooth agenesis, whereas the genes and defects responsible for the majority of cases of tooth agenesis, especially the common and less severe forms, are largely unknown. In this study it was shown, that a dominant nonsense mutation in PAX9 was responsible for severe tooth agenesis (oligodontia) in a Finnish family. In a study of tooth agenesis associated with Wolf-Hirschhorn syndrome, it was shown that severe tooth agenesis was present if the causative deletion in 4p spanned the MSX1 locus. It was concluded that severe tooth agenesis was caused by haploinsufficiency of these transcription factors. A summary of the phenotypes associated with known defects in MSX1 and PAX9 showed that, despite similarities, they were significantly different, suggesting that the genes, in addition to known interactions, also have independent roles during the development of human dentition. The original aim of this work was to identify gene defects that underlie the common incisor and premolar hypodontia. After excluding several candidate genes, a genome-wide search was conducted in seven Finnish families in which this phenotype was inherited in an autosomal dominant manner. A promising locus for second premolar agenesis was identified in chromosome 18 in one family and this finding was supported by results from other families. The results also implied the existence of other loci both for second premolar agenesis and for incisor agenesis. On the other hand the results did not lend support for comprehensive involvement of the most obvious candidate genes in the etiology of incisor and premolar hypodontia. Rather, they suggest remarkable genetic heterogeneity of tooth agenesis. The available evidence suggests that quantitative defects during tooth development predispose to a failure to overcome a developmental threshold and to agenesis. The results of the study increase the understanding of the etiology and heredity of tooth agenesis. Further studies may lead to identification of novel genes that affect the development of teeth.
  • Lagus, Markus (Helsingin yliopisto, 2013)
    BACKGROUND Sleep disturbances and mood alterations are highly interrelated. The majority of patients suffering from depression report a reduced sleep quality. Inversely, people with sleep complaints are at elevated risk to develop depression. The complex regulation of these phenomena involves several brain areas and mechanisms. The susceptibility to change in this system is influenced by several factors, such as age and stressful lifestyle that are considered in this study. HYPOTHESIS The hypothesis of this study was that sleep and mood share common genetic/molecular regulatory networks and that both are also regulated by epigenetic mechanisms and neural plasticity. METHODS The studies were conducted both on humans and using an animal model for depression. In the animal model we measured the genome wide expression of genes in different brain areas of clomipramine-treated pups and adults. Using these data we conducted both individual area and inter-area network analyses of basal forebrain, frontal cortex, hypothalamus and hippocampus. We also measured the amount of BDNF, one of the plasticity-related factors, in sleep restriction and under aging. In the human study we conducted epigenetic analysis of the serotonin transporter gene and related the epigenetic changes to stress in a stressful working environment. RESULTS In the models investigated changes were observed on the system, protein, transcript and transcriptional regulatory levels. Inter-tissue pathways related to synaptic transmission, regulation of translation and ubiquitinylation were disrupted. The involved pathways are within the cellular components of the axons, growth cones, melanosomes and pigment granules. The disturbed networks are centred around serotonin, Mn(II) and Rhoa. In the basal forebrain the imbalance in gene expression is widely controlled by CREB1. Some of the changes seem to be epigenetically induced by sleep deprivation and stress. Individuals working in a high stress environment have significantly less methylation in the promoter area of serotonin transporter gene SLC6A4, as compared to individuals working in a low stress environment. We also found that the expression of cortical BDNF correlated with the recovery non-REM (NREM) slow wave activity (SWA) response, and that both the cortical BDNF and the SWA response to sleep deprivation were decreased in the aged animals, as were the changes in sleep latency. CONCLUSIONS The disturbances in the models investigated, arise, largely, but not solely, due to disruption in neurological systems previously related to the regulation of sleep and mood. Novelty value could be ascribed to findings that suggest involvement of inter-tissue networks, and more precisely, imbalance of melanosome related gene expression and gene networks connected to Mn(II). The stress induced demethylation of the SLC6A4 promoter suggests a mechanism for the body to cope with prolonged excessive stress. The downside of this coping mechanism is the possibility that this reprogramming increases the long-term risk for mood disorders. The findings in the sleep deprived aging rats support the hypothesis that the age related decrease in homeostatic NREM SWA is related to a reduced sleep need.
  • Aula, Nina (Helsingin yliopisto, 2003)
  • Sarparanta, Jaakko (Helsingin yliopisto, 2013)
    This study aimed at elucidating molecular pathways behind muscular dystrophies, inherited disorders causing progressive weakness and loss of skeletal muscle, with the perspectives of demonstrating the pathogenicity of newly identified mutations, understanding the biology of muscle diseases, and finding options for their treatment. Tibial muscular dystrophy (TMD) and limb-girdle muscular dystrophy type 2J (LGMD2J) are caused by mutations in the C-terminal (M-band) part of the sarcomeric protein titin, whereas LGMD2A results from mutations in the muscle-specific protease calpain 3 (CAPN3). In yeast two-hybrid studies aiming at identifying proteins secondarily affected in the diseases, the multifunctional TRIM-related protein myospryn (CMYA5) was identified as a novel binding partner for both M-band titin and CAPN3. The interactions were confirmed by coimmunoprecipitation, and localization of myospryn at the M-band level was supported by multiple methods. Coexpression studies identified myospryn as a proteolytic substrate for CAPN3, and suggested that myospryn may attenuate its autolytic activation. The biological role of the titin myospryn interaction remained unresolved, and the mouse model of TMD/LGMD2J showed normal myospryn localization. However, since the TMD/LGMD2J mutations disrupt the myospryn binding site in titin, they are likely to have a downstream functional effect on myospryn. LGMD1D is caused by dominant mutations in the ubiquitous co-chaperone DNAJB6. LGMD1D muscle showed a myofibrillar pathology, with cytoplasmic accumulations of DNAJB6, aggregated Z-disc-associated proteins, and autophagic rimmed vacuoles. Expression of DNAJB6 constructs in zebrafish embryos confirmed a toxic effect of the mutant cytoplasmic DNAJB6b isoform, and cell culture studies demonstrated a slower turnover and impaired anti-aggregation activity of mutant DNAJB6. Protein interaction studies indicated an association of DNAJB6 with the chaperone-assisted selective autophagy (CASA) pathway, and a modulatory effect of BAG3 on DNAJB6 pathogenicity in zebrafish suggested that CASA has active role in the pathogenesis of LGMD1D. Welander distal myopathy (WDM) results from a dominant mutation in the prion-related domain (PRD) of the RNA-binding protein TIA1, a regulator of splicing and translation, and a component of stress granules (SGs). RT-PCR analysis of selected TIA1 target genes did not show splicing changes in WDM muscle, suggesting that the pathogenesis does not involve extensive mis-splicing. IF microscopy revealed accumulation of TIA1 and other SG proteins in WDM muscle, while image analysis of transfected cells, and fluorescence recovery after photobleaching (FRAP) studies indicated a mild increase in the SG-forming propensity of mutant TIA1. These findings suggest that increased aggregation of the TIA1 PRD causes muscle pathology in WDM, either directly through inappropriate protein aggregation or indirectly by compromising cellular metabolism.
  • Pitkäranta, Miia (Helsingin yliopisto, 2012)
    Epidemiological studies have shown an elevation in the incidence of asthma, allergic symptoms and respiratory infections among people living or working in buildings with moisture and mould problems. Microbial growth is suspected to have a key role, since the severity of microbial contamination and symptoms show a positive correlation, while the removal of contaminated materials relieves the symptoms. However, the cause-and-effect relationship has not been well established and knowledge of the causative agents is incomplete. The present consensus of indoor microbes relies on culture-based methods. Microbial cultivation and identification is known to provide qualitatively and quantitatively biased results, which is suspected to be one of the reasons behind the often inconsistent findings between objectively measured microbiological attributes and health. In the present study the indoor microbial communities were assessed using culture-independent, DNA based methods. Fungal and bacterial diversity was determined by amplifying and sequencing the nucITS- and16S-gene regions, correspondingly. In addition, the cell equivalent numbers of 69 mould species or groups were determined by quantitative PCR (qPCR). The results from molecular analyses were compared with results obtained using traditional plate cultivation for fungi. Using DNA-based tools, the indoor microbial diversity was found to be consistently higher and taxonomically wider than viable diversity. The dominant sequence types of fungi, and also of bacteria were mainly affiliated with well-known microbial species. However, in each building they were accompanied by various rare, uncultivable and unknown species. In both moisture-damaged and undamaged buildings the dominant fungal sequence phylotypes were affiliated with the classes Dothideomycetes (mould-like filamentous ascomycetes); Agaricomycetes (mushroom- and polypore-like filamentous basidiomycetes); Urediniomycetes (rust-like basidiomycetes); Tremellomycetes and the family Malasseziales (both yeast-like basidiomycetes). The most probable source for the majority of fungal types was the outdoor environment. In contrast, the dominant bacterial phylotypes in both damaged and undamaged buildings were affiliated with human-associated members within the phyla Actinobacteria and Firmicutes. Indications of elevated fungal diversity within potentially moisture-damage-associated fungal groups were recorded in two of the damaged buildings, while one of the buildings was characterized by an abundance of members of the Penicillium chrysogenum and P. commune species complexes. However, due to the small sample number and strong normal variation firm conclusions concerning the effect of moisture damage on the species diversity could not be made. The fungal communities in dust samples showed seasonal variation, which reflected the seasonal fluctuation of outdoor fungi. Seasonal variation of bacterial communities was less clear but to some extent attributable to the outdoor sources as well. The comparison of methods showed that clone library sequencing was a feasible method for describing the total microbial diversity, indicated a moderate quantitative correlation between sequencing and qPCR results and confirmed that culture based methods give both a qualitative and quantitative underestimate of microbial diversity in the indoor environment. However, certain important indoor fungi such as Penicillium spp. were clearly underrepresented in the sequence material, probably due to their physiological and genetic properties. Species specific qPCR was a more efficient and sensitive method for detecting and quantitating individual species than sequencing, but in order to exploit the full advantage of the method in building investigations more information is needed about the microbial species growing on damaged materials. In the present study, a new method was also developed for enhanced screening of the marker gene clone libraries. The suitability of the screening method to different kinds of microbial environments including biowaste compost material and indoor settled dusts was evaluated. The usability was found to be restricted to environments that support the growth and subsequent dominance of a small number microbial species, such as compost material.
  • Rice, Ritva (Helsingin yliopisto, 2004)