Browsing by Title

Sort by: Order: Results:

Now showing items 398-417 of 741
  • Rice, Ritva (Helsingin yliopisto, 2004)
  • Voutilainen, Maria (Helsingin yliopisto, 2015)
    Mammary gland development begins during embryogenesis with the formation of species-typical number of mammary placodes that emerge along the flanks of the embryo at conserved positions. By birth, the mammary primordium has undergone branching morphogenesis and displays a small ductal tree with several branches. The organ development and growth continues throughout postnatal life and the mammary gland matures to functional form only during pregnancy and following lactation. Ectodysplasin (Eda), a member of the tumour necrosis factor family, is one of the key regulators of epithelial appendage development in all vertebrates. In humans, mutations in the Eda gene, or in other components of the signalling pathway, cause hypohidrotic ectodermal dysplasia (HED), a disorder characterized by sparse hair, missing teeth, and defects in several exocrine glands including the breast. Previous studies have shown that transgenic overexpression of Eda (K14-Eda mice) in the developing ectoderm leads to formation of ectopic mammary placodes, which give rise to supernumerary glands in the adult mice. Otherwise, effects of Eda signalling in the mammary gland have been fairly unknown. Here I have analysed the role of Eda in prepubertal mammary gland development. Characterization of the mammary glands of Eda gain- (K14-Eda) and loss-of-function (Eda−/−) mice revealed that the branching morphogenesis of the organs correlated with Eda levels. Overexpression of Eda induced precocious and accelerated branching whereas lack of Eda reduced number of ductal tips. Furthermore, Eda induced supernumerary mammary placode formation not only on the flank but also in the neck region. Analysis of the mouse line with suppressed NF-kappaB signaling (IκBαΔN mice) revealed that the transcription factor is a major mediator of Eda in the mammary gland. NF-kappaB activity was shown to be necessary for the ability of Eda to induce supernumerary mammary primordia and to accelerate branching morphogenesis. With a candidate gene approach and genome wide-profiling several potent Eda target genes were identified in the mammary gland. Among them were members of the Wnt/beta-cat pathway. The obtained results suggest that Eda promotes mammary cell fate by enhancing canonical Wnt pathway activity and other effects of Eda are cooperatively mediated by certain Wnt family members in addition to other factors. To study mammary placode formation and branching morphogenesis and to assess roles of individual downstream factors or pathways, ex vivo culture systems were developed and utilized in this thesis work.
  • Morales Suárez, Luis Orlando (Helsingin yliopisto, 2014)
    Plant responses to solar ultraviolet radiation (UV, 280-400 nm) were assessed at different molecular levels using Betula pendula Roth (silver birch) and Arabidopsis thaliana (Arabidopsis) as model species in outdoor experiments to assess the possibly interacting roles of the UV-B and UV-A wavebands in acclimation to sunlight. Solar UV-B (280-315 nm) and UV-A (315-400 nm) irradiance was attenuated with plastic films. Both solar UV-B and UV-A promoted the acclimation of silver birch and Arabidopsis to UV in sunlight by regulating the expression of genes with functions in UV protection and also by inducing the accumulation of phenolic compounds in the leaves. Solar UV also regulated transcript accumulation of genes involved in the signaling and biosynthesis of auxin, brassinosteroids and jasmonic acid (JA) in Arabidopsis. A new role of Arabidopsis UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) in the regulation of some responses to solar UV-A radiation was observed in addition to its previously described role in UV-B perception. High UV-A irradiance as present in sunlight, had a large effect on plant metabolism and modulated some of the previously characterized UV-B responses most probably through interaction between UVR8 and CRY pathways. In contrast to UVR8, under UV-B irradiation conditions not inducing stress, RADICAL-INDUCED CELL DEATH1 (RCD1) played no active role in UV signaling and acclimation, but rather modulated UV responses under sunlight. We demonstrated that solar UV-A makes an important contribution to acclimation of plants to sunlight, independently and interacting with UV-B.
  • Jokela-Määttä, Mirka (Helsingin yliopisto, 2009)
    Visual pigments of different animal species must have evolved at some stage to match the prevailing light environments, since all visual functions depend on their ability to absorb available photons and transduce the event into a reliable neural signal. There is a large literature on correlation between the light environment and spectral sensitivity between different fish species. However, little work has been done on evolutionary adaptation between separated populations within species. More generally, little is known about the rate of evolutionary adaptation to changing spectral environments. The objective of this thesis is to illuminate the constraints under which the evolutionary tuning of visual pigments works as evident in: scope, tempo, available molecular routes, and signal/noise trade-offs. Aquatic environments offer Nature s own laboratories for research on visual pigment properties, as naturally occurring light environments offer an enormous range of variation in both spectral composition and intensity. The present thesis focuses on the visual pigments that serve dim-light vision in two groups of model species, teleost fishes and mysid crustaceans. The geographical emphasis is in the brackish Baltic Sea area with its well-known postglacial isolation history and its aquatic fauna of both marine and fresh-water origin. The absorbance spectrum of the (single) dim-light visual pigment were recorded by microspectrophotometry (MSP) in single rods of 26 fish species and single rhabdoms of 8 opossum shrimp populations of the genus Mysis inhabiting marine, brackish or freshwater environments. Additionally, spectral sensitivity was determined from six Mysis populations by electroretinogram (ERG) recording. The rod opsin gene was sequenced in individuals of four allopatric populations of the sand goby (Pomatoschistus minutus). Rod opsins of two other goby species were investigated as outgroups for comparison. Rod absorbance spectra of the Baltic subspecies or populations of the primarily marine species herring (Clupea harengus membras), sand goby (P. minutus), and flounder (Platichthys flesus) were long-wavelength-shifted compared to their marine populations. The spectral shifts are consistent with adaptation for improved quantum catch (QC) as well as improved signal-to-noise ratio (SNR) of vision in the Baltic light environment. Since the chromophore of the pigment was pure A1 in all cases, this has apparently been achieved by evolutionary tuning of the opsin visual pigment. By contrast, no opsin-based differences were evident between lake and sea populations of species of fresh-water origin, which can tune their pigment by varying chromophore ratios. A more detailed analysis of differences in absorbance spectra and opsin sequence between and within populations was conducted using the sand goby as model species. Four allopatric populations from the Baltic Sea (B), Swedish west coast (S), English Channel (E), and Adriatic Sea (A) were examined. Rod absorbance spectra, characterized by the wavelength of maximum absorbance (λmax), differed between populations and correlated with differences in the spectral light transmission of the respective water bodies. The greatest λmax shift as well as the greatest opsin sequence difference was between the Baltic and the Adriatic populations. The significant within-population variation of the Baltic λmax values (506-511 nm) was analyzed on the level of individuals and was shown to correlate well with opsin sequence substitutions. The sequences of individuals with λmax at shorter wavelengths were identical to that of the Swedish population, whereas those with λmax at longer wavelengths additionally had substitution F261F/Y in the sixth transmembrane helix of the protein. This substitution (Y261) was also present in the Baltic common gobies and is known to redshift spectra. The tuning mechanism of the long-wavelength type Baltic sand gobies is assumed to be the co-expression of F261 and Y261 in all rods to produce ≈ 5 nm redshift. The polymorphism of the Baltic sand goby population possibly indicates ambiguous selection pressures in the Baltic Sea. The visual pigments of all lake populations of the opossum shrimp (Mysis relicta) were red-shifted by 25 nm compared with all Baltic Sea populations. This is calculated to confer a significant advantage in both QC and SNR in many humus-rich lakes with reddish water. Since only A2 chromophore was present, the differences obviously reflect evolutionary tuning of the visual protein, the opsin. The changes have occurred within the ca. 9000 years that the lakes have been isolated from the Sea after the most recent glaciation. At present, it seems that the mechanism explaining the spectral differences between lake and sea populations is not an amino acid substitution at any other conventional tuning site, but the mechanism is yet to be found.
  • Rao, Pengcheng (Helsingin yliopisto, 2001)
  • Kainulainen, Veera (2012)
    Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.
  • Puhka, Maija (Helsingin yliopisto, 2011)
    The endoplasmic reticulum (ER) and the Golgi apparatus are organelles that produce, modify and transport proteins and lipids and regulate Ca2+ environment within cells. Structurally they are composed of sheets and tubules. Sheets may take various forms: intact, fenestrated, single or stacked. The ER, including the nuclear envelope, is a single continuous network, while the Golgi shows only some level of connectivity. It is often unclear, how different morphologies correspond to particular functions. Previous studies indicate that the structures of the ER and Golgi are dynamic and regulated by fusion and fission events, cytoskeleton, rate of protein synthesis and secretion, and specific structural proteins. For example, many structural proteins shaping tubular ER have been identified, but sheet formation is much more unclear. In this study, we used light and electron microscopy to study morphological changes of the ER and Golgi in mammalian cells. The proportion, type, location and dynamics of ER sheets and tubules were found to vary in a cell type or cell cycle stage dependent manner. During interphase, ER and Golgi structures were demonstrated to be regulated by p37, a cofactor of the fusion factor p97, and microtubules, which also affected the localization of the organelles. Like previously shown for the Golgi, the ER displayed a tendency for fenestration and tubulation during mitosis. However, this shape change did not result in ER fragmentation as happens to Golgi, but a continuous network was retained. The activity of p97/p37 was found to be important for the reassembly of both organelles after mitosis. In EM images, ER sheet membranes appear rough, since they contain attached ribosomes, whereas tubular membranes appear smooth. Our studies revealed that structural changes of the ER towards fenestrated and tubular direction correlate with loss of ER-bound ribosomes and vice versa. High and low curvature ER membranes have a low and high density of ribosomes, respectively. To conclude, both ER and Golgi architecture depend on fusion activity of p97/p37. ER morphogenesis, particularly of the sheet shape, is intimately linked to the density of membrane bound ribosomes.
  • Holmlund, Emma (Helsingin yliopisto, 2011)
    Symptomless nasopharyngeal carriage of Streptococcus pneumoniae (pneumococcus) is very common in young children. Occasionally the carriage proceeds into mild mucosal diseases, such as sinusitis or acute otitis media, or into serious life-threatening diseases, such as pneumonia, sepsis or meningitis. Each year, up to one million children less than five years of age worldwide die of invasive pneumococcal diseases (IPD). Especially in the low-income countries IPD is a leading health problem in infants; 75% of all IPD cases occur before one year of age. This stresses the need of increased protection against pneumococcus in infancy. Anti-pneumococcal antibodies form an important component in the defence against pneumococcal infection. Maternal immunisation and early infant immunisation are two possible ways by which potentially protective antibody concentrations against pneumococci could be achieved in early infancy. The aim of this thesis is to increase the knowledge of antibody mediated protection against pneumococcal disease in infants and young children. We investigated the transfer of maternal anti-pneumococcal antibodies from Filipino mothers to their infants, the persistence of the transferred antibodies in the infants, the immunogenicity of the 23-valent pneumococcal polysaccharide vaccine (PPV) in infants and the response of the children to a second dose of PPV at three years of age. We also investigated the development of antibodies to pneumococcal protein antigens in relation to culture-confirmed pneumococcal carriage in infants. Serum samples were collected from the mothers, the umbilical cords and from the infants at young age as well as at three years of age. The samples were used to determine the antibody concentrations to pneumococcal serotypes 1, 5, 6B, 14, 18C and 19F, as well as to the pneumococcal proteins PspA, PsaA, Ply, PspC, PhtD, PhtDC and LytC by the enzyme immunoassay. The findings of the present study confirm previously obtained results and add to the global knowledge of responses to PPV in young children. Immunising pregnant women with PPV provides the infants with increased concentrations of pneumococcal polysaccharide antibodies. Of the six serotypes examined, serotypes 1 and 5 were immunogenic already in infants. At three years of age, the children responded well to the second dose of PPV suggesting that maternal and early infant immunisations might not induce hyporesponsiveness to polysaccharide antigens after subsequent immunisations. The anti-protein antibody findings provide useful information for the development of pneumococcal protein vaccines. All six proteins studied were immunogenic in infancy and the development of anti-protein antibodies started early in life in relation to pneumococcal carriage.
  • Edelman, Sanna (Helsingin yliopisto, 2005)
  • Simell, Birgit (Helsingin yliopisto, 2003)
  • Poussu, Eini (Helsingin yliopisto, 2007)
    Transposons, mobile genetic elements that are ubiquitous in all living organisms have been used as tools in molecular biology for decades. They have the ability to move into discrete DNA locations with no apparent homology to the target site. The utility of transposons as molecular tools is based on their ability to integrate into various DNA sequences efficiently, producing extensive mutant clone libraries that can be used in various molecular biology applications. Bacteriophage Mu is one of the most useful transposons due to its well-characterized and simple in vitro transposition reaction. This study establishes the properties of the Mu in vitro transposition system as a versatile multipurpose tool in molecular biology. In addition, this study describes Mu-based applications for engineering proteins by random insertional transposon mutagenesis in order to study structure-function relationships in proteins. We initially characterized the properties of the minimal Mu in vitro transposition system. We showed that the Mu transposition system works efficiently and accurately and produces insertions into a wide spectrum of target sites in different DNA molecules. Then, we developed a pentapeptide insertion mutagenesis strategy for inserting random five amino acid cassettes into proteins. These protein variants can be used especially for screening important sites for protein-protein interactions. Also, the system may produce temperature-sensitive variants of the protein of interest. Furthermore, we developed an efficient screening system for high-resolution mapping of protein-protein interfaces with the pentapeptide insertion mutagenesis. This was accomplished by combining the mutagenesis with subsequent yeast two-hybrid screening and PCR-based genetic footprinting. This combination allows the analysis of the whole mutant library en masse, without the need for producing or isolating separate mutant clones, and the protein-protein interfaces can be determined at amino acid accuracy. The system was validated by analysing the interacting region of JFC1 with Rab8A, and we show that the interaction is mediated via the JFC1 Slp homology domain. In addition, we developed a procedure for the production of nested sets of N- and C-terminal deletion variants of proteins with the Mu system. These variants are useful in many functional studies of proteins, especially in mapping regions involved in protein-protein interactions. This methodology was validated by analysing the region in yeast Mso1 involved in an interaction with Sec1. The results of this study show that the Mu in vitro transposition system is versatile for various applicational purposes and can efficiently be adapted to random protein engineering applications for functional studies of proteins.
  • Vilen, Heikki (Helsingin yliopisto, 2006)
    Transposons are mobile elements of genetic material that are able to move in the genomes of their host organisms using a special form of recombination called transposition. Bacteriophage Mu was the first transposon for which a cell-free in vitro transposition reaction was developed. Subsequently, the reaction has been refined and the minimal Mu in vitro reaction is useful in the generation of comprehensive libraries of mutant DNA molecules that can be used in a variety of applications. To date, the functional genetics applications of Mu in vitro technology have been subjected to either plasmids or genomic regions and entire genomes of viruses cloned on specific vectors. This study expands the use of Mu in vitro transposition in functional genetics and genomics by describing novel methods applicable to the targeted transgenesis of mouse and the whole-genome analysis of bacteriophages. The methods described here are rapid, efficient, and easily applicable to a wide variety of organisms, demonstrating the potential of the Mu transposition technology in the functional analysis of genes and genomes. First, an easy-to-use, rapid strategy to generate construct for the targeted mutagenesis of mouse genes was developed. To test the strategy, a gene encoding a neuronal K+/Cl- cotransporter was mutagenised. After a highly efficient transpositional mutagenesis, the gene fragments mutagenised were cloned into a vector backbone and transferred into bacterial cells. These constructs were screened with PCR using an effective 3D matrix system. In addition to traditional knock-out constructs, the method developed yields hypomorphic alleles that lead into reduced expression of the target gene in transgenic mice and have since been used in a follow-up study. Moreover, a scheme is devised to rapidly produce conditional alleles from the constructs produced. Next, an efficient strategy for the whole-genome analysis of bacteriophages was developed based on the transpositional mutagenesis of uncloned, infective virus genomes and their subsequent transfer into susceptible host cells. Mutant viruses able to produce viable progeny were collected and their transposon integration sites determined to map genomic regions nonessential to the viral life cycle. This method, applied here to three very different bacteriophages, PRD1, ΦYeO3 12, and PM2, does not require the target genome to be cloned and is directly applicable to all DNA and RNA viruses that have infective genomes. The method developed yielded valuable novel information on the three bacteriophages studied and whole-genome data can be complemented with concomitant studies on individual genes. Moreover, end-modified transposons constructed for this study can be used to manipulate genomes devoid of suitable restriction sites.
  • Jokela, Pia (Helsingin yliopisto, 2012)
    The family Picornaviridae includes many human pathogens. Human enteroviruses (HEVs) exhibit a variety of clinical manifestations ranging from poliomyelitis and encephalomyelitis to respiratory infections and rashes. Human rhinoviruses (HRVs) are the major causes of the common cold. Human parechoviruses (HPeVs) and Aichi virus (AV) are mostly detected in cases of gastroenteritis, and hepatitis A virus (HAV) causes hepatitis with favourable prognosis. In addition to HEVs and HRVs, a large number of viruses are recognized as respiratory pathogens. The conventional respiratory pathogens include influenza A and B viruses, human respiratory syncytial virus (RSV), adenoviruses (AdVs), parainfluenza viruses (PIVs) and the human coronaviruses (hCoVs) OC43 and 229E. Moreover, several new respiratory pathogens, such as human metapneumovirus (hMPV), severe acute respiratory syndrome coronavirus (SARS-CoV), and the hCoVs HKU1 and NL63 have been found during the 2000s. Human bocavirus (hBoV) is also increasingly being recognized as a true pathogen of humans. Since many clinical illnesses may be caused by several different viruses, multiplex assays for simultaneous detection of several viruses are increasingly being applied. Real-time multiplex polymerase chain reaction (PCR) assays for detection of viral nucleic acids offer remarkable benefits, such as short turnaround time and the non-necessity for handling amplified products. Since multiplexing, utilizing real-time PCR, is limited by reduction in amplification efficiency due to multiple primer and probe sets, separate amplification and hybridization reactions have re-emerged in attempts to develop tests with broad diagnostic range. With this approach microarrays, which have the potential for resolving complex mixtures of amplification products, may be applied. In this study, a multiplex reverse transcription-PCR (RT-PCR) and liquid hybridization assay for sensitive detection of HEV, HRV, HPeV and AV were developed and a single RT-PCR and liquid hybridization assay for detection of HAV was optimized. In analysis of clinical samples, the results obtained by the multiplex assay were consistent with those obtained by routine diagnostic assays. When 68 stool samples were analysed for the presence of HPeV and AV, one sample positive for HPeV was detected. This finding is in line with the current knowledge of neither of these viruses being very common enteric pathogens. More rapid detection of HEV and HRV in respiratory samples was achieved when a real-time duplex RT-PCR assay for detection of these viruses was developed. The same approach was used to develop another assay for more sensitive detection of RSV than with the direct fluorescent assay (DFA) and simultaneous identification of hMPV. Both multiplex real-time RT-PCR assays provided reliable and sensitive detection of their targets, except for detection of HRV, since doubts were raised on the ability of the assay to detect all rhinoviruses. Moreover, two commercial hMPV antibodies were found applicable for detection of the virus in respiratory samples by DFA. Results from analysis of respiratory samples using the duplex real-time RT-PCR assays were compared with those obtained with DFA and the Respiratory Viral Panel (RVP) Fast test, a bead-based suspension microarray test evaluated for routine diagnosis. The RVP Fast assay and PCR showed similar detection rates, except for HEV/HRV, for which a higher detection rate by RVP was observed. All PCR-based assays presented more findings of their target viruses than DFA. The broad detection range of the RVP Fast assay resulted in a nearly threefold overall detection rate, compared with that by DFA. Moreover, analysis of clinical samples resulted in a notable prevalence of hMPV and non-SARS-hCoVs, which emphasizes the role of these viruses as respiratory pathogens. Although the RVP Fast assay demonstrated adequate overall performance, doubts were raised on the ability of the test to detect the H1N1 2009 influenza A virus and all AdV serotypes. Evaluation of the RVP Fast assay demonstrated the remarkable increase in overall viral detection rate that results from adapting a PCR-based multiplex assay to virus diagnostics. The sensitive detection of all the viruses of clinical relevance facilitates efficient infection control measures and appropriate patient management and enables systematic studies on the clinical importance of coinfections. Moreover, collection of data on occurrence of all the viruses of clinical relevance will enable a better understanding of the seasonality, geographical distribution and risk groups of the viral pathogens.
  • Brustle, Lena (Helsingin yliopisto, 2009)
    Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.
  • Potila, Hannamaria (Helsingin yliopisto, 2008)
    Fungi have a fundamental role in carbon and nutrient transformations in the acids soils of boreal regions, such as peatlands, where high amounts of carbon (C) and nutrients are stored in peat, the pH is relatively low and the nutrient uptake of trees is highly dependent on mycorrhizae. In this thesis, the aim was to examine nitrogen (N) transformations and the availability of dissolved N compounds in forestry-drained peatlands, to compare the fungal community biomass and structure at various peat N levels, to investigate the growth of ectomycorrhizal fungi with variable P and K availability and to assess how the ectomycorrhizal fungi (ECM) affect N transformations. Both field and laboratory experiments were carried out. The peat N concentration did not affect the soil fungal community structure within a site. Phosphorus (P) and potassium (K) deficiency of the trees as well as the degree of decomposition and dissolved organic nitrogen (DON) concentration of the peat were shown to affect the fungal community structure and biomass of ECMs, highlighting the complexity of the below ground system on drained peatlands. The biomass of extrametrical mycorrhizal mycelia (EMM) was enhanced by P and/or K deficiency of the trees, and ECM biomass in the roots was increased by P deficiency. Thus, PK deficiency in drained peatlands may increase the allocation of C by the tree to ECMs. It was also observed that fungi can alter N mineralization processes in the rhizosphere but variously depending on fungal species and fertility level of peat. Gross N mineralization did not vary but the net N mineralization rate significantly increased along the N gradient in both field and laboratory experiments. Gross N immobilization also significantly increased when the peat N concentration increased. Nitrification was hardly detectable in either field or laboratory experiments. During the growing season, dissolved inorganic N (DIN) fluctuated much more than the relatively stable DON. Special methodological challenges associated with sampling and analysis in microbial studies on peatlands are discussed.
  • Hirvenkari, Lotta (Helsingin yliopisto, 2015)
    Social interaction consists of events of different modalities that unfold on a subsecond timescale and are usually influenced by all involved participants. Therefore, social interaction is difficult to be simulated in laboratory, as simple, static, and unidirectional stimuli and tasks do not cover its properties accurately enough. However, moving towards more natural experimental setups in brain imaging, e.g. in magnetoencephalography (MEG), means giving up many traditional ways of analysis, such as signal averaging on the basis of pre-classified well-controlled stimuli. Thus, in addition to developing naturalistic experimental setups, new ways are needed to analyse the data and to classify the events of interest. In this thesis, ecologically valid experimental setups for brain imaging of social interaction were developed and tested in three MEG and two behavioural experiments. Of the MEG studies, the first study presented in this thesis introduced a free-viewing paradigm for MEG and showed different responses to congruent and incongruent audiovisual stimuli in the auditory cortex. In the second MEG study auditory cortex was shown to respond differently to the anticipation of emotional and neutral sounds. The third MEG study presented a setup for simultaneous MEG measurements of two interacting persons, validating its feasibility by showing reproducible and similar auditory responses in both subjects to stimuli delivered from the two measurement sites. The two behavioural studies of this thesis concentrated on turn taking behaviour in conversation. The first of them showed that the organization of turn-taking guides the gaze of an external viewer of the conversation. The latter study demonstrated that speech is a strong inducer of behavioural entrainment as speakers mutually adapted their speaking rhythms when producing sentences with a partner.