Browsing by Title

Sort by: Order: Results:

Now showing items 27-46 of 736
  • Lehikoinen, Annukka (Helsingin yliopisto, 2014)
    Environmental risk assessment (ERA) is a process of estimating the probability and consequences of an adverse event due to pressures or changes in environmental conditions resulting from human activities. Its purpose is to search the optimal courses of action under uncertainty when striving for the sustainable use of environment through minimizing the potential losses. As environmental issues are typically multidisciplinary, addressing large amount of eco-societal inter-linkages, an optimal tool for the ERA should enable the efficient integration and meta-analysis of multidisciplinary knowledge. By describing the causalities and studying the interactions among its components, this kind of integrative analysis provides us better understanding about the environmental system in focus. In addition, the functional ERA application should allow exploring, explaining and forecasting the responses of an environmental system to changes in natural and human induced stressors, serving as a decision support model that enables the search of optimal management strategy, also in the presence of imperfect knowledge. Bayesian Network (BN) is a graphical model that enables the integration of both quantitative and qualitative data and knowledge to a causal chain of inference. It is a powerful tool for synthesising knowledge, logic and rules, providing aid for thinking about complex systems that are too demanding to be analysed by human brains alone. In a BN, all the knowledge is handled in the form of probability distributions, thus the result represents the prevailing state of knowledge. The method facilitates analysing the location and amount of uncertainty explicitly, as well as enables studying its significance when it comes to the decision making. The main contribution of this thesis is to share experiences and ideas about the development and use of the ERA applications executed by using the BN as method. The perspective of the work is dichotomic. The objective in the separate studies presented in the articles have been on one hand to develop tools for integrating available knowledge and materials to enable the quantitative assessment of the environmental risks. On the other hand, the ultimate aim has been to learn more about the environmental risks and their potential management in the case study area of the Gulf of Finland. In this thesis, both of these perspectives are considered. Eutrophication and oil transportations at the Gulf of Finland are used as the case issues. The thesis concludes that Bayesian networks have plenty of properties that are useful for ERA and the method can be used for solving problems typical for that field analytically. By planting the developed graphical BNs in the commonly used Drivers-Pressures-States-Impacts-Responses -problem structuring framework, it is also demonstrated that combining these two approaches can be helpful in conceptual modeling, enabling the better framing of the research problem at hand and thinking about it systematically. The greatest challenges concerning the BN-ERA modeling are found to be related to the computational limitations of the current BN software, when it comes to the joint use of the discretised and continuous variables, as well as the restricted capacity to include the spatial resolution to the models. Producing the prior probability distributions by using deterministic models is also noted to be relatively tedious and time-consuming. The issues of end use of the applications, problems related to the scientific publishing of them, as well as the advantages and challenges of working in the multidisciplinary research teams are discussed.
  • Laakkonen, Mika (Helsingin yliopisto, 2007)
    Predation forms one of the main selective forces in nature and in a vast number of prey species the behavioural responses form the main way to avoid predation. World wide numerous captive breeding programs are used to produce fish and other animal species for conservational reintroductions. However, rearing animals in the absence of predators in captivity has been shown to weaken their predator avoidance skills and lead to behavioural divergence between wild and captive-bred populations. In my thesis I studied the effects of predator odour exposures on antipredator behavioural and physiological responses of captive reared Saimaa Arctic charr. This charr population is the most endangered fish population in Finland and a sample of the remaining population has been taken to captive breeding and used for an extensive reintroduction program. Lowered responsiveness to predators is probably one of the major reasons for the poor survival probability of the charr after release into the wild. The main aims of my thesis were to explore the reasons for behavioural phenotypic variation in this charr population and whether naïve charr young could be trained to recognise their natural predators. The predator species in my thesis were burbot (Lota lota) and pikeperch (Sander lucioperca). In my thesis I showed that the captive-bred charr responded to chemical cues from burbot and pikeperch, but the magnitude of responses was linked to the predator species. The burbot odour increased the spatial odour avoidance of the charr young. On the other hand, in the pikeperch treatment charr reduced their relative swimming activity and tended to show more freezing behaviour relative to the burbot treatment. It seems evident that these different responses are related to the different hunting tactics of predator species. Furthermore, I detected wide between-family differences in antipredator responsiveness (i.e. inherited variation in antipredator behaviours) in this captive stock. Detected differences were greater in the response towards burbot than towards pikeperch. These results, in addition to predator-specific antipredator responses, suggest that there is a clear inherited component in antipredator responsiveness in Saimaa charr population and that the detected inherited differences could explain a part of the behavioural phenotypic variation in this population. In my thesis I also found out that both social learning and direct exposure to live predators enhance the antipredator responsiveness of charr young. In addition, I obtained indications that predator odour exposures (i.e. life-skills training) in alevin and fry stages can fine-tune the innate antipredator responsiveness of charr. Thus, all these methods have the potential to enhance the innate antipredator responsiveness of naïve charr young, possibly also improving the post-release survival of these trained individuals in the wild. However, the next logical phase would be to carry out large scale survival studies in the wild to test this hypothesis. Finally, the results of my thesis emphasize that possible long-term life-skills training methods should take into account not only the behavioural but also the physiological effects of training.
  • Sarhan, Alia (Helsingin yliopisto, 2006)
    In my thesis I have been studying the effects of population fragmentation and extinction-recolonization dynamics on genetic and evolutionary processes in the Glanville fritillary butterfly (Melitaea cinxia). By conducting crosses within and among newly-colonized populations and using several fitness measures, I found a strong decrease in fitness following colonization by a few related individuals, and a strong negative relationship between parental relatedness and offspring fitness. Thereafter, I was interested in determining the number and relatedness of individuals colonizing new populations, which I did using a set of microsatellites I had previously developed for this species. Additionally, I am interested in the evolution of key life-history traits. By following the lifetime reproductive success of males emerging at different times in a semi-natural setup, I demonstrated that protandry is adaptive in males, and I was able to rule out, for M. cinxia, alternative incidental hypotheses evoked to explain the evolution of protandry in insects. Finally, in work I did together with Prof. Hanna Kokko, I am proposing bet-hedging as a new mechanism that could explain the evolution of polyandry in M. cinxia.
  • Tuomainen, Ulla (Helsingin yliopisto, 2012)
    When a habitat undergoes change, the first response of an individual is often behavioural adjustment. This immediate response can determine whether the population will survive or not, as behavioural flexibility gives time for genetic changes to arise later on. Habitat changes that alter reproductive behaviours can have long-lasting effects on populations. If the selective regime has changed under the new conditions, mate choice cues may no longer reliably reflect an individual s quality. Thus, animals have to be able to adjust their reproductive behaviours to the local conditions. The aim of my thesis was to discuss if and how animals are able to respond to rapid anthropogenic environmental change, and to study the mechanisms of the responses and the evolutionary consequences. The main focus was on the effects of human-induced eutrophication on the reproductive behaviour of fishes. Eutrophication is the result of increased nutrient input and can cause dense underwater vegetation and algal blooms. I used fishes from two very different ecosystems as model species, the Baltic Sea threespine stickleback (Gasterosteus aculeatus) and the desert goby (Chlamydogobius eremius), an endemic species of the Lake Eyre region in Central Australia. I investigated the effects of increased habitat complexity on courtship behaviour and the possibility of local differentiation in courtship and nest building behaviour depending on the level eutrophication in the habitat of origin. Furthermore, I observed the effect of turbidity on stickleback nest building behaviour. The results show that threespine stickleback males, which were born in areas that have been eutrophied for decades, court females at a higher intensity than males from clear water areas. Similarly, male desert gobies increased their courtship effort in dense vegetation. Intense courtship could be an adjustment to reduced visibility and lowered predation risk in the densely vegetated sites. However, there were no clear differences in nest building between males from clear and eutrophied areas under standardized conditions. This was expected as Baltic Sea sticklebacks prefer to nest under vegetation cover and are fairly rigid in adjusting their nest characteristics. Nest building was affected by increased turbidity: males built smaller nests with a larger nest entrance in turbid water. The large variation in the magnitude of phytoplankton blooms may require a rapid adjustment of the optimal nest structure to the current conditions. This thesis highlights the complex interactions that are set- off by human-induced changes in habitats and are followed by the immediate behavioural responses. It also encourages more research to tease apart the phenotypic and genetic components of the observed behavioural differences.
  • Hellstedt, Paavo (Helsingin yliopisto, 2005)
  • Kanerva, Teri (Helsingin yliopisto, 2006)
    This thesis focuses on how elevated CO2 and/or O3 affect the below-ground processes in semi-natural vegetation, with an emphasis on greenhouse gases, N cycling and microbial communities. Meadow mesocosms mimicking lowland hay meadows in Jokioinen, SW Finland, were enclosed in open-top chambers and exposed to ambient and elevated levels of O3 (40-50 ppb) and/or CO2 (+100 ppm) for three consecutive growing season, while chamberless plots were used as chamber controls. Chemical and microbiological analyses as well as laboratory incubations of the mesocosm soils under different treatments were used to study the effects of O3 and/or CO2. Artificially constructed mesocosms were also compared with natural meadows with regards to GHG fluxes and soil characteristics. In addition to research conducted at the ecosystem level (i.e. the mesocosm study), soil microbial communities were also examined in a pot experiment with monocultures of individual species. By comparing mesocosms with similar natural plant assemblage, it was possible to demonstrate that artificial mesocosms simulated natural habitats, even though some differences were found in the CH4 oxidation rate, soil mineral N, and total C and N concentrations in the soil. After three growing seasons of fumigations, the fluxes of N2O, CH4, and CO2 were decreased in the NF+O3 treatment, and the soil NH4+-N and mineral N concentrations were lower in the NF+O3 treatment than in the NF control treatment. The mesocosm soil microbial communities were affected negatively by the NF+O3 treatment, as the total, bacterial, actinobacterial, and fungal PLFA biomasses as well as the fungal:bacterial biomass ratio decreased under elevated O3. In the pot survey, O3 decreased the total, bacterial, actinobacterial, and mycorrhizal PLFA biomasses in the bulk soil and affected the microbial community structure in the rhizosphere of L. pratensis, whereas the bulk soil and rhizosphere of the other monoculture, A. capillaris, remained unaffected by O3. Elevated CO2 caused only minor and insignificant changes in the GHG fluxes, N cycling, and the microbial community structure. In the present study, the below-ground processes were modified after three years of moderate O3 enhancement. A tentative conclusion is that a decrease in N availability may have feedback effects on plant growth and competition and affect the N cycling of the whole meadow ecosystem. Ecosystem level changes occur slowly, and multiplication of the responses might be expected in the long run.
  • Saarikangas, Juha (Helsingin yliopisto, 2010)
    Plasma membrane adopts myriad of different shapes to carry out essential cellular processes such as nutrient uptake, immunological defence mechanisms and cell migration. Therefore, the details how different plasma membrane structures are made and remodelled are of the upmost importance. Bending of plasma membrane into different shapes requires substantial amount of force, which can be provided by the actin cytoskeleton, however, the molecules that regulate the interplay between the actin cytoskeleton and plasma membrane have remained elusive. Recent findings have placed new types of effectors at sites of plasma membrane remodelling, including BAR proteins, which can directly bind and deform plasma membrane into different shapes. In addition to their membrane-bending abilities, BAR proteins also harbor protein domains that intimately link them to the actin cytoskeleton. The ancient BAR domain fold has evolved into at least three structurally and functionally different sub-groups: the BAR, F-BAR and I-BAR domains. This thesis work describes the discovery and functional characterization of the Inverse-BAR domains (I-BARs). Using synthetic model membranes, we have shown that I-BAR domains bind and deform membranes into tubular structures through a binding-surface composed of positively charged amino acids. Importantly, the membrane-binding surface of I-BAR domains displays an inverse geometry to that of the BAR and F-BAR domains, and these structural differences explain why I-BAR domains induce cell protrusions whereas BAR and most F-BAR domains induce cell invaginations. In addition, our results indicate that the binding of I-BAR domains to membranes can alter the spatial organization of phosphoinositides within membranes. Intriguingly, we also found that some I-BAR domains can insert helical motifs into the membrane bilayer, which has important consequences for their membrane binding/bending functions. In mammals there are five I-BAR domain containing proteins. Cell biological studies on ABBA revealed that it is highly expressed in radial glial cells during the development of the central nervous system and plays an important role in the extension process of radial glia-like C6R cells by regulating lamellipodial dynamics through its I-BAR domain. To reveal the role of these proteins in the context of animals, we analyzed MIM knockout mice and found that MIM is required for proper renal functions in adult mice. MIM deficient mice displayed a severe urine concentration defect due to defective intercellular junctions of the kidney epithelia. Consistently, MIM localized to adherens junctions in cultured kidney epithelial cells, where it promoted actin assembly through its I-BAR andWH2 domains. In summary, this thesis describes the mechanism how I-BAR proteins deform membranes and provides information about the biological role of these proteins, which to our knowledge are the first proteins that have been shown to directly deform plasma membrane to make cell protrusions.
  • Viitasalo, Satu (Helsingin yliopisto, 2007)
    Benthic-pelagic coupling describes processes that operate across and between the seafloor and open-water ecosystems. In soft-sediment communities, bioturbation by sediment-dwelling and epibenthic organisms may strongly shape habitat characteristics and influence processes, e.g. biogeochemical cycling, which supplies bioavailable nutrients to pelagic primary producers. In addition, benthic fauna may mediate benthic-pelagic coupling by affecting the survival and hatching of zooplankton dormant eggs in the sediment. In the shallow waters and seasonally fluctuating environment of the Baltic Sea, emergence from the seafloor essentially contributes to the dynamics of zooplankton pelagic populations. In this thesis, I examine how benthic organisms with different functional traits affect the link between the benthic and pelagic systems in the northern Baltic Sea. By means of experimental laboratory studies, the effects of sediment-dwelling (Monoporeia affinis, Macoma balthica and Marenzelleria spp.) and nectobenthic (Mysis spp.) taxa on the survival and hatching of zooplankton benthic eggs and on benthic nutrient fluxes and sediment structure were investigated. In the predation studies, the nectobenthic mysids Mysis spp. preyed upon benthic eggs of the cladoceran Bosmina longispina maritima (syn. B. coregoni maritima), both in pelagic and benthic environments. Of the sediment-dwelling species, the amphipod M. affinis and the bivalve M. balthica reduced the number of cladoceran eggs in the sediment, whereas the polychaetes Marenzelleria spp. had no effects on cladoceran eggs. Both M. balthica and M. affinis also increased the mortality rates of benthic eggs of copepods and rotifers. It was estimated that zooplankton eggs provide an additional carbon source for food-limited benthic communities. The results indicate that predation pressure on zooplankton benthic eggs may be strong, but varies widely depending on the season and the functional characteristics of the macrofauna. Macoma balthica buried cladoceran eggs and a fluorescent tracer from the sediment surface to a depth of 3 4 cm, indicating efficient sediment mixing. In contrast, the other taxa had fewer effects on particle distributions. In addition to organic matter mineralization, particle mixing is crucial to the success of benthic recruitment of zooplankton, since only eggs close to the sediment surface may hatch. Macoma balthica and M. affinis altered the patterns of zooplankton emergence from the sediment. In general, the highest emergence rates were observed in the absence of macroscopic fauna, and M. balthica exerted a stronger suppressive effect than M. affinis. Moreover, copepods were less severely affected than cladocerans, while only one species (Temora longicornis) clearly benefited from the presence of the macrofauna. These differences probably result from species-specific differences in the resistance of eggs to disturbances. The results show that benthic fauna may considerably alter the patterns of zooplankton emergence from the seafloor, thereby shaping zooplankton pelagic populations. The semi-motile M. balthica and Marenzelleria spp. increased the fluxes of phosphate and ammonium from the sediment to the water, whereas the motile M. affinis and Mysis mixta had a contrasting effect. In the eutrophied Baltic Sea, efficient internal cycling of bioavailable nutrients forms a strong feedback inhibiting the recovery of the ecosystem. Based on the results, a change in species dominance from the two motile taxa, susceptible to oxygen deficiency, to the more tolerant semi-motile taxa provides additional feedback, strengthening internal nutrient cycling and accelerating eutrophication, with deteriorating near-bottom oxygen conditions and changes in the benthic communities. In shallow-water ecosystems, benthic nutrient regeneration plays a key role in determining the overall productivity of the ecosystem. In addition, the results of this study show that the communities in the benthos may essentially contribute to the structure of those in the plankton.
  • Fagerholm, Susanna (Helsingin yliopisto, 2002)
  • Penttinen, Sari (Helsingin yliopisto, 2010)
    Physicochemical characterization of freshwater samples from Finland, Sweden, the Netherlands, and Spain revealed that water hardness and pH decreased and the quantity and quality of humic substances changed considerably in this geographical series from south to north. Since the ambient water chemistry may affect the availability of chemicals, the total aqueous concentration of a chemical may be insufficient to predict the bioconcentration, subsequent biological response, and thus risk. In addition, organisms could be affected directly by water quality characteristics. In this context the main objective of this thesis was to investigate the bioavailability of selected ecotoxicologically relevant chemicals (cadmium, benzo(a)pyrene, and pyrene) in various European surface waters and to show the importance of certain water chemistry characteristics in interpreting the bioavailability and toxicity results. The bioavailability of cadmium to Daphnia magna was examined in very soft humic lake water. Humic substances as natural ligands decreased the free and bioavailable proportion of cadmium in soft lake water. As a consequence the uptake rate and the acute toxicity decreased compared with the humic-free reference. When the hardness of humic lake water was artificially elevated, the acute toxicity of cadmium decreased, although the proportion of free cadmium increased. The decreased bioavailability of cadmium in hard water was a result of effective competition for uptake by the hardness cations, especially calcium ions. The protective role of humic substances and water hardness against cadmium toxicity was also observed in Lumbriculus variegatus, although D. magna was more sensitive to cadmium. The bioavailability of two polycyclic aromatic hydrocarbons (PAHs), pyrene and benzo(a)pyrene, was studied in European surface waters of varying water chemistry. Humic substances acted as complexing ligands with both PAHs, but the bioavailability of the more lipophilic benzo(a)pyrene to D. magna was affected more by humic substances than that of pyrene. In addition, not only the quantity of humic substances, but also their quality affected the bioavailability of benzo(a)pyrene. Nevertheless, the humic substances played a protective role in the photo-enhanced toxicity of pyrene under UV-B radiation. Water hardness had no effect on pyrene toxicity. Results indicate that the typical physicochemical characteristics of boreal freshwaters should be considered carefully in local and regional risk assessment of chemicals concerning the Fennoscandian region.
  • Dermadi Bebek, Denis (Helsingin yliopisto, 2014)
    Colorectal cancer (CRC) is one of the leading causes of death in developed countries. Although, a small fraction of cancers are caused by inherited genetic predisposition most of the CRCs are sporadic. In CRC, cancer risk is associated with lifestyle factors and aging. Even in dominantly inherited CRC predisposition such as in Lynch syndrome (LS), which is linked to germline mu- tations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2, cancer develops as a result of accumulation of genetic and epigenetic changes. After diagnosing an LS family, to be able to offer contiguous pre-symptomatic surveillance and predictive gene counseling to mutation carriers in a family, the pathogenicity assessment of a mutation is needed. Dependent on the type and the site of a germline mutation, inherited cancer risk may vary from high to low and especially in the latter case cancer risk may be strongly affected by lifestyle factors such as diet. Epidemiological studies on humans and previous studies on mice have shown that especially a Western-style diet (WD) may predispose colon mucosa to CRC. However, the mechanisms, which mediate the effects of diet on tumorigenesis are largely unknown. Since both genetic and lifestyle factors have been shown to predispose to cancer, this the- sis analyzed biochemical defects caused by inherited MMR gene mutations and Western diet exposure. Different MMR gene mutations may compromise MMR function through various biochemical defects. Here, we studied 18 inherited non-truncating mutations in MSH2, the second most frequently mutated gene among Lynch syndrome patients. We assessed protein stability, DNA binding, and ATP mediated DNA release abilities of the MSH2 variants. The majority of variants in the amino terminal region including the connector and lever domains p.V161D, p.G162R, p.G164R, p.L173P, p.L187P, p.C333Y, p.D603N) affected protein stabil- ity. Variations in the ATPase domain (p.A636P, p.G674A, p.C697F, p.I745-I746del, p.E749K) totally abolished either mismatch binding or release. Four protein variants (p.T33P, p.A272 V, p.G322D, p.V923E) expressed slightly reduced mismatch binding and/or release efficiencies compared to wild-type (WT) MSH2 protein, while two variants (p.N127S, p.A834T) were in- distinguishable from WT. To define the effects of Western-style diet, we analyzed protein expression changes in histolog- ically normal colon mucosa of wild type (Mlh1+/+) and CRC predisposed mice (Mlh1+/-) after a long-term feeding experiment with WD and AIN-93G control diet. Using network analysis and data mining we also determined which of the affected proteins might be putative play- ers in early CRC development. Our results pinpoint changes in a complex protein interaction network involved in ATP synthesis coupled proton transport, oxidoreduction coenzyme and nicotinamide nucleotide metabolic processes, which are important in the generation of reactive oxygen species (ROS) and cellular protection against ROS toxicity. Additionally, we detected SELENBP1 and LGALS4, which are implied in neoplastic processes. Our studies show that mutations in the MMR gene affect the biochemistry of MMR, can have an effect on the phenotype of the mutation carriers and in the latest study suggest that the high sensitivity to Western diet may be linked to haplo-insufficiency caused by a loss of function mutation in the Mlh1+/- mice.
  • Qian, Kui (Helsingin yliopisto, 2013)
    Human papillomaviruses (HPVs) form a large family among double stranded DNA (dsDNA) viruses, some types of which are the major causes of cervical cancer. HPV 16 is widely distributed and the most common high-risk HPV type and approximately half of the cervical cancers are associated with HPV type 16. Of the three HPV 16 encoded oncogenes, the function of E5 in regulating viral replication and pathogenesis is less well understood than E6 and E7. The microRNAs (miRNAs) are important small noncoding RNA molecules that regulate wide range of cellular functions. Some dsDNA viruses, such as SV40 and human polyomaviruses, have functional viral miRNAs. The functional and molecular similarities among dsDNA viruses suggest that HPV could encode viral miRNAs, which have not been validated thus far. The aim of this thesis was to study the functions of the host miRNAs in HPV 16 oncogene induction and identify novel HPV encoded viral miRNAs. We utilized microarray technology to investigate the effect of E5 on host miRNAs and mRNAs expression in 0 96 hours after E5 induction in a cell line model. Among the differentially expressed cellular miRNAs, we further validated the expression of hsa-mir-146a, hsa-mir-203, and hsa-mir-324-5p and some of their target genes in a time series of 96 hours of E5 induction. Our results indicate that HPV E5 expression has an impact through complex regulatory patterns of gene expression in the host cells, and part of those genes is regulated by the E5 protein. Second, high throughput sequencing was used to identify virus-encoded miRNAs. We prepared small RNA sequencing libraries from ten HPV-associated cervical lesions, including cancer and two HPV-harboring cell lines. For more flexible analysis of the sequencing data we developed miRSeqNovel, an R based workflow for miRNA sequencing data analysis, and applied it to the sequencing data to predict putative viral miRNAs and discovered nine putative papillomavirus encoded miRNAs. Viral miRNA validation was performed for five candidates, four of which were successfully validated by qPCR from cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38, and one by HPV 68. The expression of two HPV 16 miRNAs was further supported by in situ hybridization, and colocalization with p16INK4A staining, a marker of cervical neoplasia. Prediction of cellular target genes of HPV 16 encoded miRNAs suggests that they may play a role in cell cycle, immune functions, cell adhesion and migration, development and cancer, which were also among the functions targeted by the E5 regulated host cell mRNA and miRNAs. Two putative viral target sites for the two validated HPV 16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene, and one in the long control region (LCR).
  • Turja, Raisa (Helsingin yliopisto, 2015)
    Biomarkers measured in organisms are sensitive molecular, cellular or individual level biological effects, which can be applied as early-warning signals of environmental contamination before damage occurs at population, community or ecosystem levels. In this thesis, a suite of biomarkers and tissue concentrations of chemicals were measured in mussels (Mytilus trossulus) as indicators of environmental pollution. The mussels were transplanted in specially made cages in coastal areas of the northern Baltic Sea influenced by different types of contamination and environmental factors. The aims of the research were to apply the biomarker approach to (1) assess the impact of contaminants on the health status of mussels, (2) investigate the effects of seasonal variability in biotic and abiotic factors, and low salinity, and (3) validate the usefulness of the mussel caging method for biomonitoring of chemical contamination in the northern Baltic Sea. The results showed marked biomarker responses coinciding with higher concentrations of contaminants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organotins and trace metals, in mussels caged at the most contaminated study sites. At the contaminated sites, for example the enzymatic biomark¬ers of the antioxidant defense system indicated higher stress level, which was closely linked to elevated level of DNA-damage, increased biotransformation activity and decreased general health status of the cells. Biomarker responses and tissue contaminant concentrations were also related to the seasonal variability in growth and especially in soft tissue weight of the mussels. In the northern Baltic Sea the mussels almost fully deplete their energy stores during the winter; in the spring mussels efficiently feed on the fresh phytoplankton, which forms the main source of energy for their reproduction, energy metabolism and growth. Natural environmental factors caused less variation in the biomarker responses in the late summer and autumn suggesting that this time period is the most suitable for studying contaminant induced effects in mussels. More pronounced effects were observed in mussels exposed jointly to low salinity and chemical contamination, indicating that increased environmental stress reduces the tolerance of mussels towards anthropogenic pressures. This work showed that the mussel caging approach is an efficient biomonitoring method to assess biological effects and tissue accumulation of complex mixtures of contaminants as long as the effects of seasonal variability and low salinity are taken into account.
  • Kauppi, Sari (Helsingin yliopisto, 2011)
    Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, but in addition, some soil types may have indigenous bacteria that are naturally suitable for degradation. The objectives for this work were (1) to find a feasible and economical technique to remediate oil spilled into Baltic Sea water and (2) to bioremediate soil contaminated by diesel oil. Moreover, the aim was (3) to study the potential for natural attenuation and the indigenous bacteria in soil, and possible adaptation to degrade diesel hydrocarbons. In the aquatic environment, the study concentrated on diesel oil sorption to cotton grass fiber, a natural by-product of peat harvesting. The impact of diesel pollution was followed in bacteria, phytoplankton and mussels. In a terrestrial environment, the focus was to compare the methods of enhanced biodegradation (biostimulation and bioaugmentation), and to study natural attenuation of oil hydrocarbons in different soil types and the effect that a history of previous contamination may have on the bioremediation potential. (1) In the aquatic environment, rapid removal of diesel oil was significant for survival of tested species and thereby diversity maintained. Cotton grass not only absorbed the diesel but also benefited the bacterial growth by providing a large colonizable surface area and hence oil-microbe contact area. Therefore use of this method would enhance bioremediation of diesel spills. (2) Biostimulation enhances bioremediation, and (3) indigenous diesel-degrading bacteria are present in boreal environments, so microbial inocula are not always needed. In the terrestrial environment experiments, the combination of aeration and addition of slowly released nitrogen advanced the oil hydrocarbon degradation. Previous contamination of soil gives the bacterial community the potential for rapid adaptation and efficient degradation of the same type of contaminant. When the freshly contaminated site needs addition of diesel degraders, previously contaminated and remediated soil could be used as a bacterial inoculum. Another choice of inoculum could be conifer forest soil, which provides a plentiful population of degraders, and based on the present results, could be considered as a safe non-polluted inoculum. According to the findings in this thesis, bioremediation (microbial degradation) and monitored natural attenuation (microbial, physical and chemical degradation) are both suitable techniques for remediation of diesel-contaminated sites in Finland.
  • Ruppel, Meri M. (Helsingin yliopisto, 2015)
    The Arctic has been warming twice as fast as the rest of the world during the last decades of global warming. Reasons for the amplified Arctic warming are thought to partly relate to positive feedbacks affecting the radiative budget of the area. Black carbon (BC) is a light-absorbing particulate produced by incomplete combustion of biomass and fossil fuels. BC strongly warms the atmosphere, and its climate effects are amplified in the Arctic where its deposition on light surfaces decreases their reflectivity, resulting in elevated heat absorption and further hastening melt of snow and ice. Globally, BC is estimated to be the second most important climate-warming agent after carbon dioxide. Historical information on BC deposition plays a significant role in the assessment of long-term climate effects of BC, but scarce data on this past variability has been available from the Arctic. Historical BC records can be attained from environmental archives, such as ice cores, peat deposits and marine and lake sediments, which store direct evidence of past BC deposition in chronological order. The objective of this thesis is to collect new spatial and temporal data on BC deposition in the European Arctic from the preindustrial to the present (i.e., the last ca. 300 years), and assess BC sources and climatic implications, by analysing five lake sediment cores from Arctic Finland and an ice core from Svalbard. No standard method exists to determine BC, and the precise definition of BC depends on the methodology used for its quantification. Here, three different analytical methods were used to quantify different components of BC. Spheroidal Carbonaceous Particles (SCP) and soot-BC (SBC) were analysed from the Arctic Finland lake sediments by SCP analysis and chemothermal oxidation at 375 °C, respectively, and elemental carbon (EC) from the Svalbard ice core with a thermal optical method. The results suggest temporal variation in past BC trends, both between study sites and between methods. While SCPs show a marked trend with fluxes peaking around 1980 and declining afterwards, they represent only a minor fraction of total BC. SBC and EC are better suited to indicate general historical BC trends. SBC fluxes vary between sites but some regional patterns are noticeable. The two northernmost lakes indicate generally decreasing SBC fluxes during the latter half of the 20th century which is in line with previous data from Greenland ice cores, modelling studies and atmospheric measurements. However, two other lake sites indicate increasing SBC fluxes from ca. 1970 to the end of the records, likely caused by local emissions from the Kola Peninsula, Russia. Moreover, an increasing EC deposition trend from ca. 1970 to 2004 is also recorded in the Svalbard ice core. This increasing trend is unexpected and unparalleled among available arctic records. The observed increase in the ice core is likely caused by flaring emissions from northern Russia. The fact that a similar trend in BC fluxes and deposition is recorded in two separate environmental archives analysed with different methods and receiving atmospheric transport from mostly different source areas, highlights the plausibility of such a trend, and implies that it may also be observable at other locations in the Arctic. In such a case, BC may have exerted a significant impact on the radiative forcing and thereby past climatic warming of the Arctic, in the most recent three or four decades. However, the present study indicates that local results cannot necessarily be extrapolated over wider areas, and therefore further studies are required to establish regional BC deposition trends within the Arctic. In addition, the study highlights that BC results obtained using different analytical methods should be compared with caution.
  • Koivisto, Maria Elisabet (Helsingin yliopisto, 2011)
    ABSTRACT The Baltic Sea is a vulnerable ecosystem currently undergoing a number of changes, both natural and human induced. The changes are likely to affect the species found on these shores, e.g. their distribution and interactions with other species. Blue mussels (Mytilus trossulus x Mytilus edulis) provide one of the main biogenic hard structures on the shallow shores of the Baltic Sea where they aggregate into dense beds and provide a number of resources for over 40 associated macrofaunal species, thus functioning as ecosystem engineers. The blue mussel, being a marine species, is highly likely to be affected by any changes in sea water salinity, circulation and/or water balance. These changes could trickle down also to affect the associated macrofaunal communities. The aims of this thesis were three-fold: first, I examined and described the macrofaunal communities found within blue mussel patches since the fauna associated with mussel patches had never been described in the study area prior to this thesis. Second, I explored how changes in mussel density, size as well as patch size and shape would affect the mussel communities. Finally, I tested how general landscape theories derived from terrestrial studies function in blue mussel systems. Theories included the structural heterogeneity hypothesis, species-area relationships, edge effects and patch isolation effects. The work shows that blue mussels in the northern Baltic Sea have an indisputable function as diversity hotspots and that the faunal assemblages found in mussel patches are extremely rich and unique. Further on, it shows that changes in mussel biomass, size, patch size and amount of edge have the potential to alter the faunal assemblages and diversity within patches. Finally, it shows that although some landscape theories, such as the structural heterogeneity hypothesis, seem to apply also in blue mussel communities, others cannot be directly applied due to the different prevailing conditions in the study system. This is a pioneering work looking at diversity shaping processes on the rocky shores of the Gulf of Finland, making up over 40% of the total water basin. A focus on niche construction, positive facilitation effects and ecosystem engineering could provide new insights and methods for conservation biology, but before this can be done, we need to fully understand the circumstances under which a species becomes an ecosystem engineer and recognize the systems in which it functions.