Browsing by Subject "biokemia"

Sort by: Order: Results:

Now showing items 1-20 of 54
  • Plihtari, Riia (Helsingin yliopisto, 2010)
    Atherosclerosis is an inflammatory disease characterized by accumulation of lipids and fibrous connective tissue in the arterial wall. Recently, it has been suggested that decrease in the pH of extracellular fluid of the arterial intima may enhance LDL accumulation by increasing binding of the LDL to matrix proteoglycans and also by making the plaque more favorable for acidic enzymes to be active. Many lysosomal acidic enzymes have been found in atherosclerotic plaques. In this thesis, we were able to induce secretion of lysosomal acidic cathepsin F from human monocyte-derived macrophages by stimulation with angiotensin II. We also showed that LDL pre-proteolyzed with cathepsin S was more prone to subsequent hydrolytic modifications by lipases. Especially acidic secretory sphingomyelinase was able to hydrolyze pre-proteolyzed LDL even at neutral pH. We also showed that the proteolyzed and lipolyzed LDL particles were able to bind more efficiently to human aortic proteoglycans. In addition, the role of extracellular acidic pH on the ability of macrophages to internalize LDL was studied. At acidic pH, the production of cell surface proteoglycans in macrophages was increased as well as the binding of native and modified LDL to cell surface proteoglycans. Furthermore, macrophages cultured at acidic pH showed increased internalization of modified and native LDL leading to foam cell formation. This thesis revealed various mechanisms by which acidic pH can increase LDL retention and accumulation in the arterial intima and has the potential to increase the progression of atherosclerosis.
  • Miettinen, Juho (Helsingin yliopisto, 2014)
    Innate immunity provides the first line of defence against invading pathogens, and can also be activated by endogenous danger signals released upon tissue damage or injury. Macrophages play an important role in innate immunity. They perform the immune surveillance of their immediate surroundings seeking out tissue damage and/or invading pathogens via pattern recognition receptors. Macrophages are activated upon detection of an invading pathogen or tissue damage, leading to the expression, and secretion of the proteins required for an efficient innate immune response. Herpes simplex virus-1 (HSV-1) is a common human pathogen. It is a master of evading the host immune response leading to its ability to cause a life-long infection in its host. In most cases, HSV-1 does not cause any symptoms in the host, or causes nothing more than an occasional painful blister in the orofacial region. However, in certain cases when the host immune system is compromised, it can cause severe, even lethal, infections. Uric acid can act as an endogenous danger signal that cells can produce and release into the extracellular space after encountering a stress, including that caused by certain viral infections. A high amount of uric acid in cells can also be attributed to certain dietary habits. In the extracellular space if present at high enough concentrations and in the presence of sodium, uric acid can become crystallized into monosodium urate (MSU). MSU is the causative of gouty inflammation in the joints and is known to be phagocytosed by macrophages. In this work, human monocyte-derived macrophages infected with HSV-1, or stimulated with MSU were studied using several proteomic methods combined with functional assays. The main goals were: to characterize the protein secretion pathways and the proteins being secreted from macrophages upon (1) HSV-1 infection, and (2) MSU stimulation; and (3) to characterize the functional mechanisms of HSV-1 infected cell protein 27 (ICP27) in the inhibition of the interferon (IFN) response and also inhibition of apoptosis during HSV-1 infection. The results revealed that robust extracellular vesicle-mediated unconventional protein secretion is induced by IFN-beta priming in HSV-1-infected, and by MSU stimulation in Toll-like receptor 4 ligand, bacterial cell wall component lipopolysaccharide-primed human macrophages. The secreted proteins included endogenous danger signal proteins, and interferon-stimulated gene-encoded proteins. In addition, HSV-1 ICP27 protein requires both the nuclear localization sequence (NLS) and nuclear export sequence (NES) in order to inhibit the IFN response, whereas the NES, but not NLS, is required for the inhibition of apoptosis. The results also demonstrate that pattern recognition receptors RIG-I and/or MDA5 are involved in the HSV-1-induced activation of apoptosis. To conclude, this thesis provides new information on the innate immune response induced by HSV-1 infection, and MSU stimulation, and also on the evasion mechanisms deployed by HSV-1 to avoid the innate immune response in human macrophages. These new results presented in this thesis may be exploited in several ways; in the development of new therapies against viral infections, and in the treatment of autoinflammatory diseases.
  • Enzerink, Anna (Helsingin yliopisto, 2010)
    Wound healing is a complex process that requires an interplay between several cell types. Classically, fibroblasts have been viewed as producers of extracellular matrix, but more recently they have been recognized as orchestrators of the healing response, promoting and directing, inflammation and neovascularization processes. Compared to those from healthy tissue, inflammation-associated fibroblasts display a dramatically altered phenotype and have been described as sentinel cells, able to switch to an immunoregulatory profile on cue. However, the activation mechanism still remains largely uncharacterized. Nemosis is a model for stromal fibroblast activation. When normal human primary fibroblasts are deprived of growth support they cluster, forming multicellular spheroids. Clustering results in upregulation of proinflammatory markers such as cyclooxygenase-2 and secretion of prostaglandins, proteinases, cytokines, and growth factors. Fibroblasts in nemosis induce wound healing and tumorigenic responses in many cell types found in inflammatory and tumor microenvironments. This study investigated the effect of nemotic fibroblasts on two components of the vascular system, leukocytes and endothelium, and characterized the inflammation-promoting responses that arose in these cell types. Fibroblasts in nemosis were found to secrete an array of chemotactic cytokines and attract leukocytes, as well as promote their adhesion to the endothelium. Nuclear factor-kB, the master regulator of many inflammatory responses, is activated in nemotic fibroblasts. Nemotic fibroblasts are known to produce large amounts of hepatocyte growth factor, a motogenic and angiogenic factor. Also, as shown in this study, they produce vascular endothelial growth factor. These two factors induced migratory and sprouting responses in endothelial cells, both required for neovascularization. Nemotic fibroblasts also caused a decrease in the expression of adherens and tight junction components on the surface of endothelial cells. The results allow the conclusion that fibroblasts in nemosis share many similarities with inflammation-associated fibroblasts. Both inflammation and stromal fibroblasts are known to be involved in tumorigenesis and tumor progression. Nemosis may be viewed as a model for stromal fibroblast activation, or it may correlate with cell-cell interactions between adjacent fibroblasts in vivo. Nevertheless, due to nemosis-derived production of proinflammatory cytokines and growth factors, fibroblast nemosis may have therapeutic potential as an inducer of controlled tissue repair. Knowledge of stromal fibroblast activation gained through studies of nemosis, could provide new strategies to control unwanted inflammation and tumor progression.
  • Tikka, Saara (Helsingin yliopisto, 2009)
    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.
  • Salusjärvi, Tuomas (Helsingin yliopisto, 2006)
    The work covered in this thesis is focused on the development of technology for bioconversion of glucose into D-erythorbic acid (D-EA) and 5-ketogluconic acid (5-KGA). The task was to show on proof-of-concept level the functionality of the enzymatic conversion or one-step bioconversion of glucose to these acids. The feasibility of both studies to be further developed for production processes was also evaluated. The glucose - D-EA bioconversion study was based on the use of a cloned gene encoding a D-EA forming soluble flavoprotein, D-gluconolactone oxidase (GLO). GLO was purified from Penicillium cyaneo-fulvum and partially sequenced. The peptide sequences obtained were used to isolate a cDNA clone encoding the enzyme. The cloned gene (GenBank accession no. AY576053) is homologous to the other known eukaryotic lactone oxidases and also to some putative prokaryotic lactone oxidases. Analysis of the deduced protein sequence of GLO indicated the presence of a typical secretion signal sequence at the N-terminus of the enzyme. No other targeting/anchoring signals were found, suggesting that GLO is the first known lactone oxidase that is secreted rather than targeted to the membranes of the endoplasmic reticulum or mitochondria. Experimental evidence supports this analysis, as near complete secretion of GLO was observed in two different yeast expression systems. Highest expression levels of GLO were obtained using Pichia pastoris as an expression host. Recombinant GLO was characterised and the suitability of purified GLO for the production of D-EA was studied. Immobilised GLO was found to be rapidly inactivated during D-EA production. The feasibility of in vivo glucose - D-EA conversion using a P. pastoris strain co-expressing the genes of GLO and glucose oxidase (GOD, E.C. 1.1.3.4) of A. niger was demonstrated. The glucose - 5-KGA bioconversion study followed a similar strategy to that used in the D-EA production research. The rationale was based on the use of a cloned gene encoding a membrane-bound pyrroloquinoline quinone (PQQ)-dependent gluconate 5-dehydrogenase (GA 5-DH). GA 5-DH was purified to homogeneity from the only source of this enzyme known in literature, Gluconobacter suboxydans, and partially sequenced. Using the amino acid sequence information, the GA 5-DH gene was cloned from a genomic library of G. suboxydans. The cloned gene was sequenced (GenBank accession no. AJ577472) and found to be an operon of two adjacent genes encoding two subunits of GA 5-DH. It turned out that GA 5-DH is a rather close homologue of a sorbitol dehydrogenase from another G. suboxydans strain. It was also found that GA 5-DH has significant polyol dehydrogenase activity. The G. suboxydans GA 5-DH gene was poorly expressed in E. coli. Under optimised conditions maximum expression levels of GA 5-DH did not exceed the levels found in wild-type G. suboxydans. Attempts to increase expression levels resulted in repression of growth and extensive cell lysis. However, the expression levels were sufficient to demonstrate the possibility of bioconversion of glucose and gluconate into 5-KGA using recombinant strains of E. coli. An uncharacterised homologue of GA 5-DH was identified in Xanthomonas campestris using in silico screening. This enzyme encoded by chromosomal locus NP_636946 was found by a sequencing project of X. campestris and named as a hypothetical glucose dehydrogenase. The gene encoding this uncharacterised enzyme was cloned, expressed in E. coli and found to encode a gluconate/polyol dehydrogenase without glucose dehydrogenase activity. Moreover, the X. campestris GA 5-DH gene was expressed in E. coli at nearly 30 times higher levels than the G. suboxydans GA 5-DH gene. Good expressability of the X. campestris GA-5DH gene makes it a valuable tool not only for 5-KGA production in the tartaric acid (TA) bioprocess, but possibly also for other bioprocesses (e.g. oxidation of sorbitol into L-sorbose). In addition to glucose - 5-KGA bioconversion, a preliminary study of the feasibility of enzymatic conversion of 5-KGA into TA was carried out. Here, the efficacy of the first step of a prospective two-step conversion route including a transketolase and a dehydrogenase was confirmed. It was found that transketolase convert 5-KGA into TA semialdehyde. A candidate for the second step was suggested to be succinic dehydrogenase, but this was not tested. The analysis of the two subprojects indicated that bioconversion of glucose to TA using X. campestris GA 5-DH should be prioritised first and the process development efforts in future should be focused on development of more efficient GA 5-DH production strains by screening a more suitable production host and by protein engineering.
  • Sharma, Vivek (Helsingin yliopisto, 2012)
    Heme-copper oxidases terminate the respiratory chain in many eukaryotes and prokaryotes as the final electron acceptors. They catalyze the reduction of molecular oxygen to water, and conserve the free-energy by proton pumping across the inner mitochondrial membrane or plasma membrane of bacteria. This leads to the generation of an electrochemical gradient across the membrane, which is utilized in the synthesis of ATP. The catalytic mechanism of oxidase is a complex coupling of electrons and protons, which has been studied with the help of numerous biophysical and biochemical methods. The superfamily of oxidases is classified into three different subfamilies; A-, B- and C-type. The A- and B-type oxidases have been studied in great depth, whereas relatively less is known about the molecular mechanism of distinct C-type (or cbb3-type) oxidases. The latter enzymes, which are known to possess unusually high oxygen affinity relative to the former class of enzymes, also share little sequence or structural similarity with the A- and B-type oxidases. In the work presented in this thesis, C-type oxidases have been studied using a variety of computational procedures, such as homology modeling, molecular dynamics simulations, density functional theory calculations and continuum electrostatics. Homology models of the C-type oxidase correctly predicts the side-chain orientation of the cross-linked tyrosine and a proton-channel. The active-site region is also modelled with high accuracy in the models, which are subsequently used in the DFT calculations. With the help of these calculations it is proposed that the different orientation of the cross-linked tyrosine, and a strong hydrogen bond in the proximal side of the high-spin heme are responsible for the higher apparent oxygen affinity and a more rhombic EPR signal in the C-type oxidases. Furthermore, the pKa profiles of two amino acid residues, which are located close to the active-site, suggest a strong electron-proton coupling and a unique proton pumping route. Molecular dynamics simulations on the two-subunit C-type oxidase allowed for the first time to observe redox state dependent water-chain formation in the protein interior, which can be utilized for the redox coupled proton transfer.
  • Pastila, Riikka (Helsingin yliopisto, 2006)
    The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.
  • Euro, Liliya (Helsingin yliopisto, 2009)
    Cells of every living organism on our planet − bacterium, plant or animal − are organized in such a way that despite differences in structure and function they utilize the same metabolic energy represented by electrochemical proton gradient across a membrane. This gradient of protons is generated by the series of membrane bound multisubunit proteins, Complex I, II, III and IV, organized in so-called respiratory or electron transport chain. In the eukaryotic cell it locates in the inner mitochondrial membrane while in the bacterial cell it locates in the cytoplasmic membrane. The function of the respiratory chain is to accept electrons from NADH and ubiquinol and transfer them to oxygen resulting in the formation of water. The free energy released upon these redox reactions is converted by respiratory enzymes into an electrochemical proton gradient, which is used for synthesis of ATP as well as for many other energy dependent processes. This thesis is focused on studies of the first member of the respiratory chain − NADH:ubiquinone oxidoreductase or Complex I. This enzyme has a boot-shape structure with hydrophilic and hydrophobic domains, the former of which has all redox groups of the protein, the flavin and eight to nine iron-sulfur clusters. Complex I serves as a proton pump coupling transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the membrane. So far the mechanism of energy transduction by Complex I is unknown. In the present study we applied a set of different methods to study the electron and proton transfer reactions in Complex I from Escherichia coli. The main achievement was the experiment that showed that the electron transfer through the hydrophilic domain of Complex I is unlikely to be coupled to proton transfer directly or to conformational changes in the protein. In this work for the first time properties of all redox centers of Complex I were characterized in the intact purified bacterial enzyme. We also probed the role of several conserved amino acid residues in the electron transfer of Complex I. Finally, we found that highly conserved amino acid residues in several membrane subunits form a common pattern with a very prominent feature – the presence of a few lysines within the membrane. Based on the experimental data, we suggested a tentative principle which may govern the redox-coupled proton pumping in Complex I.
  • Toivari, Mervi (Helsingin yliopisto, 2007)
    The baker s yeast Saccharomyces cerevisiae has a long tradition in alcohol production from D-glucose of e.g. starch. However, without genetic modifications it is unable to utilise the 5-carbon sugars D-xylose and L arabinose present in plant biomass. In this study, one key metabolic step of the catabolic D-xylose pathway in recombinant D-xylose-utilising S. cerevisiae strains was studied. This step, carried out by xylulokinase (XK), was shown to be rate-limiting, because overexpression of the xylulokinase-encoding gene XKS1 increased both the specific ethanol production rate and the yield from D xylose. In addition, less of the unwanted side product xylitol was produced. Recombinant D-xylose-utilizing S. cerevisiae strains have been constructed by expressing the genes coding for the first two enzymes of the pathway, D-xylose reductase (XR) and xylitol dehydrogenase (XDH) from the D-xylose-utilising yeast Pichia stipitis. In this study, the ability of endogenous genes of S. cerevisiae to enable D-xylose utilisation was evaluated. Overexpression of the GRE3 gene coding for an unspecific aldose reductase and the ScXYL2 gene coding for a xylitol dehydrogenase homologue enabled growth on D-xylose in aerobic conditions. However, the strain with GRE3 and ScXYL2 had a lower growth rate and accumulated more xylitol compared to the strain with the corresponding enzymes from P. stipitis. Use of the strictly NADPH-dependent Gre3p instead of the P. stipitis XR able to utilise both NADH and NADPH leads to a more severe redox imbalance. In a S. cerevisiae strain not engineered for D-xylose utilisation the presence of D-xylose increased xylitol dehydrogenase activity and the expression of the genes SOR1 or SOR2 coding for sorbitol dehydrogenase. Thus, D-xylose utilisation by S. cerevisiae with activities encoded by ScXYL2 or possibly SOR1 or SOR2, and GRE3 is feasible, but requires efficient redox balance engineering. Compared to D-xylose, D-glucose is a cheap and readily available substrate and thus an attractive alternative for xylitol manufacture. In this study, the pentose phosphate pathway (PPP) of S. cerevisiae was engineered for production of xylitol from D-glucose. Xylitol was formed from D-xylulose 5-phosphate in strains lacking transketolase activity and expressing the gene coding for XDH from P. stipitis. In addition to xylitol, ribitol, D-ribose and D-ribulose were also formed. Deletion of the xylulokinase-encoding gene increased xylitol production, whereas the expression of DOG1 coding for sugar phosphate phosphatase increased ribitol, D-ribose and D-ribulose production. Strains lacking phosphoglucose isomerase (Pgi1p) activity were shown to produce 5 carbon compounds through PPP when DOG1 was overexpressed. Expression of genes encoding glyceraldehyde 3-phosphate dehydrogenase of Bacillus subtilis, GapB, or NAD-dependent glutamate dehydrogenase Gdh2p of S. cerevisiae, altered the cellular redox balance and enhanced growth of pgi1 strains on D glucose, but co-expression with DOG1 reduced growth on higher D-glucose concentrations. Strains lacking both transketolase and phosphoglucose isomerase activities tolerated only low D-glucose concentrations, but the yield of 5-carbon sugars and sugar alcohols on D-glucose was about 50% (w/w).
  • Lehtiö, Lari (Helsingin yliopisto, 2006)
    The first glycyl radical in an enzyme was described 20 years ago and since then the family of glycyl radical enzymes (GREs) has expanded to include enzymes catalysing five chemically distinct reactions. The type enzymes of the family, anaerobic ribonucleotide reductase (RNRIII) and pyruvate formate lyase (PFL) had been studied long before it was known that they are GREs. Spectroscopic measurements on the radical and an observation that exposure to oxygen irreversibly inactivates the enzymes by cleavage of the protein proved that the radical is located on a particular glycine residue, close to the C-terminus of the protein. Both anaerobic RNRIII and PFL, are important for many anaerobic and facultative anaerobic bacteria as RNRIII is responsible for the synthesis of DNA precursors and PFL catalyses a key metabolic reaction in glycolysis. The crystal structures of both were solved in 1999 and they revealed that, although the enzymes do not share significant sequence identity, they share a similar structure - the radical site and residues necessary for catalysis are buried inside a ten stranded $\ualpha $/$\ubeta $-barrel. GREs are synthesised in an inactive form and are post-translationally activated by an activating enzyme which uses S-adenosyl methionine and an iron-sulphur cluster to generate the radical. One of the goals of this thesis work was to crystallise the activating enzyme of PFL. This task is challenging as, like GREs, the activating component is inactivated by oxygen. The experiments were therefore carried out in an oxygen free atmosphere. This is the first report of a crystalline GRE activating enzyme. Recently several new GREs have been characterised, all sharing sequence similarity to PFL but not to RNRIII. Also, the genome sequencing projects have identified many PFL-like GREs of unknown function, usually annotated as PFLs. In the present thesis I describe the grouping of these PFL family enzymes based on the sequence similarity and analyse the conservation patterns when compared to the structure of E. coli PFL. Based on this information an activation route is proposed. I also report a crystal structure of one of the PFL-like enzymes with unknown function, PFL2 from Archaeoglobus fulgidus. As A. fulgidus is a hyperthermophilic organism, possible mechanisms stabilising the structure are discussed. The organisation of an active site of PFL2 suggests that the enzyme may be a dehydratase. Keywords: glycyl radical, enzyme, pyruvate formate lyase, x-ray crystallography, bioinformatics
  • Niittymäki, Jaana (Helsingin yliopisto, 2007)
    GDP-L-fucose: synthesis and role in inflammation The migration of leukocytes from intravascular locations to extravascular sites is essential to the immune responses. The initial attachment of leukocytes to the endothelium and the rolling step of the leukocyte extravasation cascade are mediated by selectins, a family of cell adhesion molecules on cell surfaces. Selectins are able to recognize glycoproteins and glycolipids containing the tetrasaccharide sialyl Lewis x (sLex, Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc). Several glycosyltransferases are involved in the biosynthesis of sLex, fucosyltransferase VII (Fuc-TVII) being the last enzyme to modify the sLex structure. Fuc-TVII transfers L-fucose from GDP-L-fucose to sialylated N-acetyllactosamine. GDP-L-fucose is synthesized in the cytosol via two different metabolic pathways. The major, constitutively active de novo pathway involves conversion of GDP-α-D-mannose to GDP-β-L-fucose. In the alternative salvage pathway, L-fucokinase synthesizes from free fucose L-fucose-1-phosphate, which is further converted to GDP-L-fucose by GDP-L-fucose pyrophosphorylase. GDP-L-fucose is translocated from the cytosol to Golgi for fucosylation via the GDP-fucose transporter. This thesis involved the study of the synthesis of GDP-L-fucose via the salvage pathway: cloning and expression of murine L-fucokinase and GDP-L-fucose pyrophosphorylase. The gene expression levels of these enzymes were found to be relatively high in various tissues; the mRNA levels were highest in brain, ovary and testis. This study also describes molecular cloning of rat fucosyltransferase VII (FUT7) and its expression as a functional enzyme. Gene expression levels of GDP-L-fucose synthesizing enzymes, GDP-fucose transporter and FUT7 were determined in inflamed tissues as well as cancer cells. Our results revealed a clear upregulation of the enzymes involved in the synthesis of GDP-L-fucose via de novo pathway, GDP-fucose transporter and FUT7 in inflamed tissues and in cancer cells. On the contrary, the GDP-L-fucose salvage pathway was found to be irrelevant in inflammation and in tumorigenesis. Furthermore, our results indicated the transcriptional coregulation of Golgi transporters involved in the synthesis of sulfo sLex, i.e. CMP-sialic acid, GDP-fucose and 3 phosphoadenosine 5 -phosphosulfate transporters, in inflammation.
  • Hirvonen, Tia (Helsingin yliopisto, 2014)
    Mesenchymal stem/stromal cells (MSCs) are multipotent adult stem cells that hold enormous therapeutic potential. They are currently in a focus of intense clinical and scientific investigation. MSCs are a promising cell type for various applications in the field of tissue engineering due to their multi-lineage differentiation capacity. Furthermore, one of their most interesting characteristics is that they possess immunomodulatory properties making these cells an attractive candidate for therapy of several immune-mediated disorders. MSCs are of nonembryonic origin and thus provide a less controversial and technically more feasible alternative for ESCs in future therapeutic applications. Due to their location on the cell surface, glycans are ideal molecules for identification, purification, and characterization of cells for therapeutic purposes. Methods to reliably and proficiently determine both the change in the presence of a specific glycan structures and the changes in the glycome profile of a cell, are needed. Glycan binding proteins in general serve as diagnostic tools in medical and scientific laboratories. High affinity and exquisite specificity are important factors for their successful use. The aim of this study was to characterize the glycans on the surface of MSCs in order to find novel MSC specific glycan markers. Further goal was to develop antibodies specific for MSC surface glycans, including the novel MSC marker. As described in the original publications of this study, we first characterized the glycome of MSCs and discovered that certain specific glycan epitopes are present only in MSCs, and not in cells differentiated from them. These epitopes include i antigen, which was further characterized to be a marker for umbilical cord blood derived MSCs. An antibody against the i antigen was generated using recombinant technology. Antibodies recognizing MSC surface glycans were also generated by utilizing hybridoma technology, using whole MSCs in the immunization. Taken together, these studies provide information of the changes in the glycome profile during MSC differentiation and describe a novel MSC marker. In these studies, we used two different methods to generate anti-glycan antibodies and emphasize the importance of thorough characterization of the binding properties of GBPs. The information of the characteristic glycosylation features of MSCs, and specific markers especially, can be used to isolate and characterize desired, therapeutically advantageous cell populations for distinct applications. Development of better glycan binding proteins will advance the field of cellular therapy and also the glycobiological research in general.
  • Suila, Heli (Helsingin yliopisto, 2014)
    Stem cells have a unique ability to both self-renew and differentiate into diverse cell types and they harbor remarkable potential in therapeutic applications. Stem cells can be isolated from various sources of both embryonic and adult origin. During the past decade, research on stem cells has rapidly expanded, but many issues of stem cell biology and their clinical use remain unresolved. There is a need for methods to thoroughly characterize therapeutic cell populations, to better distinguish them from other cells, and to control variation within and between different cell preparations. The surface of stem cells, like all other human cell surfaces, is covered by a complex network of glycans. This is the outmost layer of cells, called the glycocalyx. The glycocalyx is characteristic to and different in every cell type and reflects even subtle changes in cell behaviour and for example cell differentiation. Cell surface glycans are the first cellular components encountered by approaching cells, pathogens, signalling molecules and other binders, making the terminal glycan units key players in cell interactions and signalling. Due to their prominent cell surface localization, glycan epitopes can be utilized for identifying and isolating specific cell types from heterogeneous populations. The aim of this study was to characterize relevant glycan structures on umbilical cord blood derived stem and progenitor cells, to study how they are regulated and to determine their influence on stem cell biology. As decribed in the original publications of this study, we were able to characterize two novel glycan determinants, O-GlcNAc and linear poly-LacNAc, on umbilical cord blood derived mesenchymal stromal cells (UCB-MSCs). We further discovered that galectins-1 and -3 secreted by these cells are bound on the cell surface and that the cell surface galectin-1 interacts with P-selectin. This interaction is likely to play a role in the immunomodulatory homing of UCB-MSCs to sites of injury or inflammation. In addition, we present the effects and potential use of metabolic glycoengineering of UCB-MSC. Taken together, these studies provide new insights into the glycobiology of UCB derived stem and progenitor cells. This information may help to distinguish better cell populations for distinct therapeutic applications and to design therapeutic cells with enhanced biological properties.
  • Takatalo, Maarit (Helsingin yliopisto, 2009)
    The Golgi complex is a central organelle of the secretory pathway, responsible for a range of post-translational modifications, as well as for membrane traffic to the plasma membrane and to the endosomal-lysosomal pathway. In addition, this organelle has roles in cell migration, in the regulation of traffic, and as a mitotic check point. The structure of the Golgi complex is highly dynamic and able to respond to the amount of cargo being transported and the stage of the cell cycle. The Golgi proteome reflects the functions and structure of this organelle, and can be divided into three major groups: the Golgi resident proteins (e.g. modification enzymes), the Golgi matrix proteins (involved in structure and tethering events), and trafficking proteins (e.g. vesicle coat proteins and Rabs). The Golgi proteome has been studied on several occasions, from both rat liver and mammary gland Golgi membranes using proteomic approaches, but still little more than half of the estimated Golgi proteome is known. Nevertheless, methodological improvements and introduction of shotgun proteomics have increased the number of identified proteins, and especially the number of identified transmembrane proteins. Cartilage, even though not a typical tissue in which to study membrane traffic, secretes large amounts of extracellular matrix proteins that are extensively modified, especially by amino acid hydroxylation, glycosylation and sulfation. Furthermore, the cartilage ECM contains several, large oligomeric proteins (such as collagen II) that are difficult to assemble and transport. Indeed, cartilage has been shown to be susceptible to changes both in secretory pathway (e.g. the COPII coat assembly) and in post-translational modifications (e.g. heparan sulfate formation). Dental follicle, and the periodontal ligament (PDL) that it forms, are another type of connective tissue, and they have a role in anchoring teeth to bone. This anchorage is achieved by numerous matrix fibres that connect the bone matrix with the cementum. These tissues have in common the secretion of large matrix molecules. In this study the Golgi proteome was analysed from purified, stacked Golgi membranes isolated from rat liver. The identified, extensive proteome included a protein similar to Ab2-095, or Golgi protein 49kDa (GoPro49), which was shown to localise to the Golgi complex as an EGFP fusion protein. Surprisingly, in situ hybridisation showed the GoPro49 expression to be highly restricted to different mesenchymal tissues, especially in cartilage, and this expression pattern was clearly developmentally regulated. In addition to cartilage, GoPro49 was also expressed in the dental follicle, but was not observed in the mature PDL. Importantly, GoPro49 is the first specific marker for the dental follicle. Endogenous GoPro49 protein co-localised with β-COP in both chondrosarcoma and primary dental follicle cell lines. The COPI staining in these cells was highly dynamic, showing a number of tubules. This may reflect the type of secretory cargo they secrete. Currently GoPro49 is the only Golgi protein with such a restricted expression pattern.
  • Pulkkinen, Ville (Helsingin yliopisto, 2006)
    The basis of this work was the identification of a genomic region on chromosome 7p14-p15 that strongly associated with asthma and high serum total immunoglobulin E in a Finnish founder population from Kainuu. Using a hierarchical genotyping approach the linkage region was narrowed down until an evolutionary collectively inherited 133-kb haplotype block was discovered. The results were confirmed in two independent data sets: Asthma families from Quebec and allergy families from North-Karelia. In all the three cohorts studied, single nucleotide polymorphisms tagging seven common gene variants (haplotypes) were identified. Over half of the asthma patients carried three evolutionary closely related susceptibility haplotypes as opposed to approximately one third of the healthy controls. The risk effects of the gene variants varied from 1.4 to 2.5. In the disease-associated region, there was one protein-coding gene named GPRA (G Protein-coupled Receptor for Asthma susceptibility also known as NPSR1) which displayed extensive alternative splicing. Only the two isoforms with distinct intracellular tail sequences, GPRA-A and -B, encoded a full-length G protein-coupled receptor with seven transmembrane regions. Using various techniques, we showed that GPRA is expressed in multiple mucosal surfaces including epithelial cells throughout the respiratory tract. GPRA-A has additional expression in respiratory smooth muscle cells. However, in bronchial biopsies with unknown haplotypes, GPRA-B was upregulated in airways of all patient samples in contrast to the lack of expression in controls. Further support for GPRA as a common mediator of inflammation was obtained from a mouse model of ovalbumin-induced inflammation, where metacholine-induced airway hyperresponsiveness correlated with elevated GPRA mRNA levels in the lung and increased GPRA immunostaining in pulmonary macrophages. A novel GPRA agonist, Neuropeptide S (NPS), stimulated phagocytosis of Esterichia coli bacteria in a mouse macrophage cell line indicating a role for GPRA in the removal of inhaled allergens. The suggested GPRA functions prompted us to study, whether GPRA haplotypes associate with respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in infants sharing clinical symptoms with asthma. According to the results, near-term RDS and asthma may also share the same susceptibility and protective GPRA haplotypes. As in asthma, GPRA-B isoform expression was induced in bronchial smooth muscle cells in RDS and BPD suggesting a role for GPRA in bronchial hyperresponsiveness. In conclusion, the results of the present study suggest that the dysregulation of the GPRA/NPS pathway may not only be limited to the individuals carrying the risk variants of the gene but is also involved in the regulation of immune functions of asthma.
  • Nummela, Pirjo (Helsingin yliopisto, 2011)
    Cancer is becoming the leading cause of deaths in the world. As 90% of all deaths from cancer are caused by metastasis, discovery of the mechanisms behind cancer cell invasion and metastasis is of utmost importance. Only new effective therapies targeting cancer progression can reduce cancer mortality rates. The aim of this study was to identify molecules that are relevant for tumor cell invasion and spreading in fibrosarcomas and melanomas, and to analyze their potential for cancer biomarkers or therapeutic targets. First, the gene expression changes of normal cells and transformed cells showing high invasiveness, S-adenosylmethionine decarboxylase (AdoMetDC)-transfected murine fibroblasts and human melanoma cells, were studied by microarray analyses. The function of the identified candidate molecules were then studied in detail in these cell lines. Finally, the physiological relevance of the identified changes was studied by immunohistochemical analyses of human sarcoma and melanoma specimens or by a mouse xenograft model. In fibrosarcoma cells, the most remarkable change detected was a dramatic up-regulation of the actin-sequestering molecule thymosin beta 4 (TB4), which was shown to be important for the transformed phenotype of the AdoMetDC-transfected cells (Amdc-s and -as). A sponge toxin latrunculin A, inhibiting the binding of TB4 to actin, was found to selectively inhibit the migration and invasion of these cells. Further, Amdc-s-induced mouse tumors and human high-grade sarcomas were found to show intense TB4 immunostaining. In addition to TB4, integrin subunits alfa 6 and beta 7 (ItgA6 and ItgB7) were found to be up-regulated in Amdc-s and -as cells. ItgA6 was shown to dimerize mainly with ItgB1 in Amdc-s. Inhibition of ItgA6 or ItgB1 function with neutralizing antibodies fully blocked the invasiveness of Amdc-s cells, and importantly also human HT-1080 fibrosarcoma cells, in three-dimensional (3D)-Matrigel mimicking tumor extracellular matrix (ECM). By immunohistochemical analyses, strong staining for ITGA6 was detected in human high-grade fibrosarcomas and other sarcomas, especially at the invasion fronts of the tumors. In the studied melanoma cell lines, the expression levels of the adhesion-related ECM proteins tenascin-C (TN-C), fibronectin (FN), and transforming growth factor beta-induced (TGFBI) were found to be highly up-regulated. By immunohistochemistry, intense TN-C and FN staining was detected in invasive and metastatic melanoma tumors, showing co-localization (together with procollagen-I) in tubular meshworks and channels around the invading melanoma cells. In vitro, TN-C and FN were further found to directly stimulate the migration of melanoma cells in 3D-collagen-I matrix. The third candidate protein, TGFBI, was found to be an anti-adhesive molecule for melanoma cells, and knockdown of its expression in metastatic melanoma cells (TGFBI-KD cells) led to dramatically impaired tumor growth in immunocompromized mice. Interestingly, the control tumors showed intense TGFBI immunostaining in the invasion fronts, showing partial co-localization with the fibrillar FN staining, whereas the small TGFBI-KD cell-induced tumors displayed amorphous, non-fibrillar FN staining. These data suggest an important role for TGFBI in FN fibrillogenesis and melanoma progression. In conclusion, we have identified several invasion-related molecules, which show potential for cancer diagnostic or prognostic markers, or therapeutic targets. Based on our previous and present fibrosarcoma studies, we propose the possibility of using ITGA6 antagonists (affecting tumor cell adhesion) in combination with TB4 inhibitors (affecting tumor cell migration) and cathepsin L inhibitors (affecting the degradation of basement membrane and ECM proteins) for the treatment of fibrosarcomas and other tumors overexpressing these molecules. With melanoma cells, in turn, we point to the importance of three secreted ECM proteins, TN-C, FN, and TGFBI, in melanoma progression. Of these, especially the potential of TN-C as a prognostic melanoma biomarker and TGFBI as a promising therapeutic target molecule are clearly worth additional studies.
  • Hilditch, Satu (Helsingin yliopisto, 2010)
    Pectin is a natural polymer consisting mainly of D-galacturonic acid monomers. Microorganisms living on decaying plant material can use D-galacturonic acid for growth. Although bacterial pathways for D-galacturonate catabolism had been described previously, no eukaryotic pathway for D-galacturonate catabolism was known at the beginning of this work. The aim of this work was to identify such a pathway. In this thesis the pathway for D-galacturonate catabolism was identified in the filamentous fungus Trichoderma reesei. The pathway consisted of four enzymes: NADPH-dependent D-galacturonate reductase (GAR1), L-galactonate dehydratase (LGD1), L-threo-3-deoxy-hexulosonate aldolase (LGA1) and NADPH-dependent glyceraldehyde reductase (GLD1). In this pathway D-galacturonate was converted to pyruvate and glycerol via L-galactonate, L-threo-3-deoxy-hexulosonate and L-glyceraldehyde. The enzyme activities of GAR1, LGD1 and LGA1 were present in crude mycelial extract only when T. reesei was grown on D-galacturonate. The activity of GLD1 was equally present on all the tested carbon sources. The corresponding genes were identified either by purifying and sequencing the enzyme or by expressing genes with homology to other similar enzymes in a heterologous host and testing the activities. The new genes that were identified were expressed in Saccharomyces cerevisiae and resulted in active enzymes. The GAR1, LGA1 and GLD1 were also produced in S. cerevisiae as active enzymes with a polyhistidine-tag, and purified and characterised. GAR1 and LGA1 catalysed reversible reactions, whereas only the forward reactions were observed for LGD1 and GLD1. When gar1, lgd1 or lga1 was deleted in T. reesei the deletion strain was unable to grow with D-galacturonate as the only carbon source, demonstrating that all the corresponding enzymes were essential for D-galacturonate catabolism and that no alternative D-galacturonate pathway exists in T. reesei. A challenge for biotechnology is to convert cheap raw materials to useful and more valuable products. Filamentous fungi are especially useful for the conversion of pectin, since they are efficient producers of pectinases. Identification of the fungal D-galacturonate pathway is of fundamental importance for the utilisation of pectin and its conversion to useful products.
  • Tiittanen, Minna (Helsingin yliopisto, 2006)
    Type 1 diabetes (T1D) is considered to be an autoimmune disease. The cause of T1D is the destruction of insulin-producing β-cells in the pancreatic islets. The autoimmune nature of T1D is characterized by the presence of autoreactive T-cells and autoantibodies against β-cell molecules. Insulin is the only β-cell-specific autoantigen associated with T1D but the insulin autoantibodies (IAAs) are difficult to measure with proper sensitivity. T-cell assays for detection of autoreactive T-cells, such as insulin-specific T-cells, have also proven to be difficult to perform. The genetic risk of T1D is associated with the HLA gene region but the environmental factors also play an important role. The most studied environmental risk factors of T1D are enteroviruses and cow's milk which both affect the immune system through the gut. One hypothesis is that the insulin-specific immune response develops against bovine insulin in cow's milk during early infancy and later spreads to include human insulin. The aims of this study were to determine whether the separation of immunoglobulin (Ig)G from plasma would improve the sensitivity of the IAA assay and how insulin treatment affects the cellular immune response to insulin in newly diagnosed patients. Furthermore, the effect of insulin concentration in mother's breast milk on the development of antibodies to dietary insulin in the child was examined. Small intestinal biopsies were also obtained from children with T1D to characterize any immunological changes associated with T1D in the gut. The isolation of the IgG fraction from the plasma of T1D patients negative for plasma IAA led to detectable IAA levels that exceeded those in the control children. Thus the isolation of IgG may improve the sensitivity of the IAA assay. The effect of insulin treatment on insulin-specific T-cells was studied by culturing peripheral blood mononuclear cells with insulin. The insulin stimulation induced increased expression of regulatory T-cell markers, such as Foxp3, in those patients treated with insulin than in patients examined before initiating insulin treatment. This finding suggests that insulin treatment in patients with T1D stimulates regulatory T-cells in vivo and this may partly explain the difficulties in measuring autoantigen-specific T-cell responses in recently diagnosed patients. The stimulation of regulatory T-cells by insulin treatment may also explain the remission period often seen after initiating insulin treatment. In the third study we showed that insulin concentration in mother's breast milk correlates inversely with the levels of bovine insulin-specific antibodies in those infants who were exposed to cow's milk proteins in their diet, suggesting that human insulin in breast milk induces tolerance to dietary bovine insulin. However, in infants who later developed T1D-associated autoantibodies, the insulin concentration in their mother's breast milk was increased. This finding may indicate that in those children prone to β-cell autoimmunity, breast milk insulin does not promote tolerance to insulin. In the small intestinal biopsies the presence of several immunological markers were quantified with the RT-PCR. From these markers the expression of the interleukin (IL)-18 cytokine was significantly increased in the gut in patients with T1D compared with children with celiac disease or control children. The increased IL-18 expression lends further support for the hypothesis that the gut immune system is involved in the pathogenesis of T1D.
  • Makkonen, Maarit (Helsingin yliopisto, 2013)
    The ability of actin to form dynamic networks is crucial for processes including cell migration, endocytosis and cell division. Furthermore, in sarcomeres of muscle cells, actin and myosin form interdigitating networks responsible for muscle contraction. Actin is found from all eukaryotic cells where it exists as monomeric and filamentous forms, which are in balance and strictly regulated by plethora of actin binding proteins. Among the most central actin binding proteins are cyclase-associated protein (CAP), cofilin, profilin and twinfilin, which are under investigation in this study. CAP is known to bind actin monomers and accelerate actin turnover together with cofilin. Furthermore, CAP has been shown to accelerate nucleotide exchange on actin monomers. Also profilin catalyzes nucleotide exchange and CAP is known to interact with profilin, but the exact mechanism how these proteins work together is not understood. This study reveals that interactions with actin monomers, cofilin and profilin are conserved in CAPs from yeast to mammals. Unexpectedly, mammalian CAP was observed to have a higher affinity for ATP-actin than yeast CAP, and mammalian CAP was found to have two independent profilin binding sites whereas yeast CAP has only one. This study also demonstrates a novel function for the mini-CAP from apicomplexan parasite as a nucleotide exchange promoting factor. The malaria parasite CAP comprises only the C-terminal ADP-actin binding site suggesting that this domain harbors the most conserved function of CAPs. The unpublished data of this study reveals that CAP, twinfilin and ADP-actin form a ternary complex. Many actin-binding proteins have muscle-specific isoforms in addition to nonmuscle ones. The muscle-specific cofilin-2 was studied here and levels of cofilin-2 were shown to increase during sarcomere maturation while cofilin-1 amounts remained constant. Also, cofilin-2 showed higher affinity for ATP-actin than cofilin-1 through a specific cluster of residues on its surface. Therefore, a specific cofilin isoform with high affinity for ATP-actin evolved to regulate actin dynamics in thin filaments of sarcomeres. The roles of other muscle-specific proteins are under particular interest and subject of future research. In summary, the findings of this study reveal the mechanisms by which CAP regulates actin dynamics together with cofilin, profilin and twinfilin. Furthermore, this study elucidates yet rather unknown actin regulation by muscle-specific cofilin-2.
  • Nurmi, Susanna (Helsingin yliopisto, 2008)
    Integrins are heterodimeric transmembrane adhesion receptors composed of alpha- and beta-subunits and they are vital for the function of multicellular organisms. Integrin-mediated adhesion is a complex process involving both affinity regulation and coupling to the actin cytoskeleton. Integrins also function as bidirectional signaling devices, regulating cell adhesion and migration after inside-out signaling, but also signal into the cell to regulate growth, differentiation and apoptosis after ligand binding. The LFA-1 integrin is exclusively expressed in leukocytes and is of fundamental importance for the function of the immune system. The LFA-1 integrins have short intracellular tails, which are devoid of catalytic activity. These cytoplasmic domains are important for integrin regulation and both the alpha and beta chain become phosphorylated. The alpha chain is constitutively phosphorylated, but the beta chain becomes phosphorylated on serine and functionally important threonine residues only after cell activation. The cytoplasmic tails of LFA-1 bind to many cytoskeletal and signaling proteins regulating numerous cell functions. However, the molecular mechanisms behind these interactions have been poorly understood. Phosphorylation of the cytoplasmic tails of the LFA-1 integrin could provide a mechanism to regulate integrin-mediated cytoskeletal interactions and take part in T cell signaling. In this study, the effects of phosphorylation of LFA-1 integrin cytoplasmic tails on different cellular functions were examined. Site-specific phosphorylation of both the alpha- and beta-chains of the LFA-1 was shown to have a role in the regulation of the LFA-1 integrin.Alpha-chain Ser1140 is needed for integrin conformational changes after chemokine- or integrin ligand-induced activation or after activation induced by active Rap1, whereas beta-chain binds to 14-3-3 proteins through the phosphorylated Thr758 and mediates cytoskeletal reorganization. Thr758 phosphorylation also acts as a molecular switch to inhibit filamin binding and allows 14-3-3 protein binding to integrin cytoplasmic domain, and it was also shown to lead to T cell adhesion, Rac-1/Cdc42 activation and expression of the T cell activation marker CD69, indicating a signaling function for Thr758 phosphorylation in T cells. Thus, phosphorylation of the cytoplasmic tails of LFA-1 plays an important role in different functions of the LFA-1 integrin in T cells. It is of vital importance to study the mechanisms and components of integrin regulation since leukocyte adhesion is involved in many functions of the immune system and defects in the regulation of LFA-1 contributes to auto-immune diseases and fundamental defects in the immune system.