Browsing by Title

Sort by: Order: Results:

Now showing items 283-302 of 946
  • Macias Fauria, Marc (Helsingin yliopisto, 2008)
    Ecological processes are controlled to varying degrees by climate. Large-scale climatic patterns (teleconnections) control the frequency of local weather phenomena over large regions (continents to hemispheres) and at different timescales (days to decades). This Ph.D. aims to explain how large-scale climate patterns synchronize a set of ecological processes northern coniferous forests (tree-ring growth, large area burnt by wildfire, and tree-mortality caused by mountain pine beetle) through controlling the frequency, duration, and spatial correlation of key local weather variables over large areas. Methodology was based on obtaining long complete ecological and climatic records and applying a variety of timeseries analyses in order to find out if climate and populations were related, and the nature and extent of such relationships, within a framework defined by knowledge on both the biological and the physical characteristics of the studied interactions. The description of the mechanisms through which such teleconnections control population traits is essential in these studies. Research on timeseries allowed the development of new methods to deal with highly autocorrelated data. Overall, the studied processes were strongly related with and synchronized by large-scale climate. Mountain ranges played a major role in creating regional climatic gradients and thus strongly influenced relationships between climate and the ecological processes. Moreover, land use (grazing in this case) strongly affected the relationships between ecological processes (tree-growth) and climate. Relationships between climate and ecological processes were found to be highly dynamic and to have changed during the 20th century, driven in part by long-term climatic changes and by internal variability of large-scale climate patterns. Finally, an environmental multi-proxy reconstruction is presented using regional relationships between climate and proxy records.
  • Saarinen, Juha (Helsingin yliopisto, 2014)
    The climatic cooling during the Cenozoic (65 Ma present) culminated in the Pleistocene Ice Ages (ca. 2.6 Ma 10 000 BP) during which the global climate oscillated between relatively warm climatic phases and very cold and dry glacial phases when extensive continental glaciers formed in the Northern hemisphere. The oscillation between the cold and warm climatic stages caused dramatic cyclic changes in the structure of vegetation varying at its extreme between relatively humid forests and very dry and cold mammoth steppes in Europe. These constantly changing and harsh climatic and environmental conditions caused strong extinction and evolution pressures on mammal species. In this thesis I will discuss how two major ecometric variables, body size and diet, of large herbivorous land mammals have varied during the Pleistocene and how these patterns are connected with climate, environmental conditions and competing mammal species. Mammals diversified and started to occupy the niches of large vertebrates after the Late Cretaceous mass extinction which caused the extinction of large non-avian dinosaurs. The frequency of maximum body size in archaic mammal orders shows a significant global peak in the Middle Eocene (ca. 40 Ma) as a result of the diversification and niche filling after the Late Cretaceous mass extinction, but after that maximum size frequency in mammal orders was low until it peaked significantly again the Pleistocene Ice Ages. This indicates that the Pleistocene climatic and environmental conditions favoured particularly large body sizes in mammals. The overall harshness of the Ice Age climate (seasonal, mostly cold and dry conditions and often rapid climatic changes) could have favoured large body sizes in large terrestrial mammals through mechanisms which are more complicated than the often cited benefit of large size for heat conservation (Bergmann s rule). Large size increases the ability to survive over seasonal shortages of resources such as food and water and enables long-distance migrations to areas of better resource availability. On the other hand, strong erosional processes caused by glaciers produced fertile soils and harsh climates reduced the chemical defences of plants, which resulted in seasonally high primary production and plant quality, which would have enabled herbivorous mammals to grow into large sizes during seasons of high productivity. The main factor driving fine-scale body size variations in ungulate populations has been shown by several studies to be resource availability, which is regulated by primary productivity, plant quality, population densities of the ungulate species (intraspecific resource competition) and interspecific resource competition. The comparisons of ungulate body sizes from Middle and Late Pleistocene of Britain and Germany with vegetation openness (percentages of non-arboreal pollen from associated pollen records) show that species with different ecological strategies have different body size patterns in relation to the vegetation structure. The connection between body size patterns and ecological strategies could explain the different responses of body size to vegetation openness. Species which tend to have relatively small group sizes (e.g. deer) show on average larger body sizes in environments where the vegetation structure is open, whereas gregarious, open adapted species (e.g. horses) tend to have smaller average body sizes in open habitats. I suggest this is because open habitats favour large body size in ecologically flexible species with small group sizes due to high resource availability and quality per an individual (relatively low population densities), less size-restricted manoeuvrability and enhanced capability to escape predators, whereas resource limitations for each individual caused by high population densities can become a limiting factor for individual body size in open-adapted, gregarious species which are efficient open-vegetation feeders and form large groups in open habitats. In closed environments, the body size of the open-adapted, gregarious species is not limited by high population density which enables them to attain larger individual sizes. Dietary signals of the key ungulate species in Middle and Late Pleistocene Europe based on mesowear analyses are on average significantly positively correlated with vegetation openness (non-arboreal pollen percentages) at locality-level. However, there are significant interspecific differences. While most of the species show positive correlations between their mesowear signal and non-arboreal vegetation, others, especially the red deer (Cervus elaphus), do not show any correlation. Instead, the mesowear signal of the red deer is significantly more abrasive dominated when other browse-dominated feeders, especially the roe deer (Capreolus capreolus) are present. This indicates that interspecific competition can obscure the effect of available plant material in the diet of ecologically flexible species. This should be taken into account when interpreting the feeding ecology of the key species in palaeocommunities, and especially when attempting to reconstruct palaeoenvironmental conditions from dietary proxies of mammals. Such attempts should ideally be based on as complete dietary analyses of fossil herbivore faunas as possible. In order to extend the palaeodietary and palaeoecological analyses based on mesowear signals of herbivorous mammas, a new tooth wear -based dietary analysis method was developed for elephants and other lamellar toothed proboscideans, based on measuring occlusal relief of their molar teeth as angles. The benefits of that approach compared with other available methods are that it is easy-to-do, fast and robust, and it gives consistent and comparable results for species with different dental morphologies. The preliminary results from that study indicate that the angle measurement method is a powerful tool for reconstructing proboscidean diets from the fossil record.
  • Elo, Aija-Riitta (Helsingin yliopisto, 2007)
    To a large extent, lakes can be described with a one-dimensional approach, as their main features can be characterized by the vertical temperature profile of the water. The development of the profiles during the year follows the seasonal climate variations. Depending on conditions, lakes become stratified during the warm summer. After cooling, overturn occurs, water cools and an ice cover forms. Typically, water is inversely stratified under the ice, and another overturn occurs in spring after the ice has melted. Features of this circulation have been used in studies to distinguish between lakes in different areas, as basis for observation systems and even as climate indicators. Numerical models can be used to calculate temperature in the lake, on the basis of the meteorological input at the surface. The simple form is to solve the surface temperature. The depth of the lake affects heat transfer, together with other morphological features, the shape and size of the lake. Also the surrounding landscape affects the formation of the meteorological fields over the lake and the energy input. For small lakes the shading by the shores affects both over the lake and inside the water body bringing limitations for the one-dimensional approach. A two-layer model gives an approximation for the basic stratification in the lake. A turbulence model can simulate vertical temperature profile in a more detailed way. If the shape of the temperature profile is very abrupt, vertical transfer is hindered, having many important consequences for lake biology. One-dimensional modelling approach was successfully studied comparing a one-layer model, a two-layer model and a turbulence model. The turbulence model was applied to lakes with different sizes, shapes and locations. Lake models need data from the lakes for model adjustment. The use of the meteorological input data on different scales was analysed, ranging from momentary turbulent changes over the lake to the use of the synoptical data with three hour intervals. Data over about 100 past years were used on the mesoscale at the range of about 100 km and climate change scenarios for future changes. Increasing air temperature typically increases water temperature in epilimnion and decreases ice cover. Lake ice data were used for modelling different kinds of lakes. They were also analyzed statistically in global context. The results were also compared with results of a hydrological watershed model and data from very small lakes for seasonal development.
  • Backman, Marie (Helsingin yliopisto, 2012)
    Ion irradiation is used to analyze and modify the structure of condensed matter. It can for instance be used to form and shape nanocrystals in solids. In research on materials for high radiation environments, ion beams function as a controlled source of irradiation for studying the basic mechanisms of ion-solid interactions and for analyzing the structure of materials by methods like Rutherford backscattering spectrometry. Understanding the fundamental processes that take place in a material under ion irradiation is important for all these applications of ion beams, and of great interest from a basic science point of view. The mechanisms involved during ion irradiation-induced displacement of atoms in uniform bulk solids are fairly well understood and described in the literature, but many unresolved questions remain regarding the structural modification caused by electronic interactions, and the radiation response of materials with phase boundaries. Especially ion irradiation of nanomaterials is a topic that is under active research. The short-lived collision cascades caused by energetic ions in solids cannot be studied in experiments and are therefore often modeled in computer simulations. Such simulations can give a host of valuable information about processes that occur in nature. It is necessary to validate simulation results by either some other computational method, or ideally by experiments. Ions lose energy by elastic collisions with the atomic nuclei as well as to the electronic system through excitation and ionization. Both energy loss mechanisms - nuclear and electronic stopping - can cause modifications to the structure of the material. In this thesis, molecular dynamics simulations are carried out in close collaboration with experimental scientists in order to study the effects of nuclear and electronic stopping during ion irradiation on nanoclusters and bulk materials. The amorphization of germanium and silicon nanocrystals in silica under ion irradiation is studied in simulations. The amorphization dose of nanocrystals is much lower than for bulk materials and it is furthermore found to depend on the size of the nanocrystals. The inelastic thermal spike model is explored as a method of incorporating electronic stopping effects into molecular dynamics. The simulations predict that local heating due to electronic stopping contributes to irradiation damage in both nanocrystals in silica and bulk silica. In silicon carbide, high electronic stopping is found to recrystallize irradiation damaged samples. Molecular dynamics simulations of inelastic thermal spikes support the hypothesis that the observed recrystallization is induced by local heating due to electronic stopping. We need a combination of computer simulations and experimental observations to explain many of the complex processes that take place during ion irradiation. The results in this thesis give insight into some experimentally observed phenomena of the effect that nuclear and electronic energy loss have in materials, but especially the research on combined effects is still in its infancy and further progress can be expected in the near future.
  • Kempa, Dominik (Helsingin yliopisto, 2015)
    This thesis studies efficient algorithms for constructing the most fundamental data structures used as building blocks in (compressed) full-text indexes. Full-text indexes are data structures that allow efficiently searching for occurrences of a query string in a (much larger) text. We are mostly interested in large-scale indexing, that is, dealing with input instances that cannot be processed entirely in internal memory and thus a much slower, external memory needs to be used. Specifically, we focus on three data structures: the suffix array, the LCP array and the Lempel-Ziv (LZ77) parsing. These are routinely found as components or used as auxiliary data structures in the construction of many modern full-text indexes. The suffix array is a list of all suffixes of a text in lexicographical order. Despite its simplicity, the suffix array is a powerful tool used extensively not only in indexing but also in data compression, string combinatorics or computational biology. The first contribution of this thesis is an improved algorithm for external memory suffix array construction based on constructing suffix arrays for blocks of text and merging them into the full suffix array. In many applications, the suffix array needs to be augmented with the information about the longest common prefix between each two adjacent suffixes in lexicographical order. The array containing such information is called the longest-common-prefix (LCP) array. The second contribution of this thesis is the first algorithm for computing the LCP array in external memory that is not an extension of a suffix-sorting algorithm. When the input text is highly repetitive, the general-purpose text indexes are usually outperformed (particularly in space usage) by specialized indexes. One of the most popular families of such indexes is based on the Lempel-Ziv (LZ77) parsing. LZ77 parsing is the encoding of text that replaces long repeating substrings with references to other occurrences. In addition to indexing, LZ77 is a heavily used tool in data compression. The third contribution of this thesis is a series of new algorithms to compute the LZ77 parsing, both in RAM and in external memory. The algorithms introduced in this thesis significantly improve upon the prior art. For example: (i) our new approach for constructing the LCP array in external memory is faster than the previously best algorithm by a factor of 2-4 and simultaneously reduces the disk space usage by a factor of four; (ii) a parallel version of our improved suffix array construction algorithm is able to handle inputs much larger than considered in the literature so far. In our experiments, computing the suffix array of a 1 TiB file with the new algorithm took a little over a week and required only 7.2 TiB of disk space (including input and output), whereas on the same machine the previously best algorithm would require 3.5 times as much disk space and take about four times longer.
  • Tarkoma, Sasu (Helsingin yliopisto, 2006)
    Event-based systems are seen as good candidates for supporting distributed applications in dynamic and ubiquitous environments because they support decoupled and asynchronous many-to-many information dissemination. Event systems are widely used, because asynchronous messaging provides a flexible alternative to RPC (Remote Procedure Call). They are typically implemented using an overlay network of routers. A content-based router forwards event messages based on filters that are installed by subscribers and other routers. The filters are organized into a routing table in order to forward incoming events to proper subscribers and neighbouring routers. This thesis addresses the optimization of content-based routing tables organized using the covering relation and presents novel data structures and configurations for improving local and distributed operation. Data structures are needed for organizing filters into a routing table that supports efficient matching and runtime operation. We present novel results on dynamic filter merging and the integration of filter merging with content-based routing tables. In addition, the thesis examines the cost of client mobility using different protocols and routing topologies. We also present a new matching technique called temporal subspace matching. The technique combines two new features. The first feature, temporal operation, supports notifications, or content profiles, that persist in time. The second feature, subspace matching, allows more expressive semantics, because notifications may contain intervals and be defined as subspaces of the content space. We also present an application of temporal subspace matching pertaining to metadata-based continuous collection and object tracking.
  • Gurtov, Andrei (Helsingin yliopisto, 2004)
  • Hämäläinen, Wilhelmiina (Helsingin yliopisto, 2010)
    Analyzing statistical dependencies is a fundamental problem in all empirical science. Dependencies help us understand causes and effects, create new scientific theories, and invent cures to problems. Nowadays, large amounts of data is available, but efficient computational tools for analyzing the data are missing. In this research, we develop efficient algorithms for a commonly occurring search problem - searching for the statistically most significant dependency rules in binary data. We consider dependency rules of the form X->A or X->not A, where X is a set of positive-valued attributes and A is a single attribute. Such rules describe which factors either increase or decrease the probability of the consequent A. A classical example are genetic and environmental factors, which can either cause or prevent a disease. The emphasis in this research is that the discovered dependencies should be genuine - i.e. they should also hold in future data. This is an important distinction from the traditional association rules, which - in spite of their name and a similar appearance to dependency rules - do not necessarily represent statistical dependencies at all or represent only spurious connections, which occur by chance. Therefore, the principal objective is to search for the rules with statistical significance measures. Another important objective is to search for only non-redundant rules, which express the real causes of dependence, without any occasional extra factors. The extra factors do not add any new information on the dependence, but can only blur it and make it less accurate in future data. The problem is computationally very demanding, because the number of all possible rules increases exponentially with the number of attributes. In addition, neither the statistical dependency nor the statistical significance are monotonic properties, which means that the traditional pruning techniques do not work. As a solution, we first derive the mathematical basis for pruning the search space with any well-behaving statistical significance measures. The mathematical theory is complemented by a new algorithmic invention, which enables an efficient search without any heuristic restrictions. The resulting algorithm can be used to search for both positive and negative dependencies with any commonly used statistical measures, like Fisher's exact test, the chi-squared measure, mutual information, and z scores. According to our experiments, the algorithm is well-scalable, especially with Fisher's exact test. It can easily handle even the densest data sets with 10000-20000 attributes. Still, the results are globally optimal, which is a remarkable improvement over the existing solutions. In practice, this means that the user does not have to worry whether the dependencies hold in future data or if the data still contains better, but undiscovered dependencies.
  • Kemell, Marianna (Helsingin yliopisto, 2003)
  • Komssi, Soile (Helsingin yliopisto, 2004)
  • Kangasmäki, Aki (Helsingin yliopisto, 1999)
  • Mäkelä, Jakke (Helsingin yliopisto, 2010)
    The dissertation deals with remote narrowband measurements of the electromagnetic radiation emitted by lightning flashes. A lightning flash consists of a number of sub-processes. The return stroke, which transfers electrical charge from the thundercloud to to the ground, is electromagnetically an impulsive wideband process; that is, it emits radiation at most frequencies in the electromagnetic spectrum, but its duration is only some tens of microseconds. Before and after the return stroke, multiple sub-processes redistribute electrical charges within the thundercloud. These sub-processes can last for tens to hundreds of milliseconds, many orders of magnitude longer than the return stroke. Each sub-process causes radiation with specific time-domain characteristics, having maxima at different frequencies. Thus, if the radiation is measured at a single narrow frequency band, it is difficult to identify the sub-processes, and some sub-processes can be missed altogether. However, narrowband detectors are simple to design and miniaturize. In particular, near the High Frequency band (High Frequency, 3 MHz to 30 MHz), ordinary shortwave radios can, in principle, be used as detectors. This dissertation utilizes a prototype detector which is essentially a handheld AM radio receiver. Measurements were made in Scandinavia, and several independent data sources were used to identify lightning sub-processes, as well as the distance to each individual flash. It is shown that multiple sub-processes radiate strongly near the HF band. The return stroke usually radiates intensely, but it cannot be reliably identified from the time-domain signal alone. This means that a narrowband measurement is best used to characterize the energy of the radiation integrated over the whole flash, without attempting to identify individual processes. The dissertation analyzes the conditions under which this integrated energy can be used to estimate the distance to the flash. It is shown that flash-by-flash variations are large, but the integrated energy is very sensitive to changes in the distance, dropping as approximately the inverse cube root of the distance. Flashes can, in principle, be detected at distances of more than 100 km, but since the ground conductivity can vary, ranging accuracy drops dramatically at distances larger than 20 km. These limitations mean that individual flashes cannot be ranged accurately using a single narrowband detector, and the useful range is limited to 30 kilometers at the most. Nevertheless, simple statistical corrections are developed, which enable an accurate estimate of the distance to the closest edge of an active storm cell, as well as the approach speed. The results of the dissertation could therefore have practical applications in real-time short-range lightning detection and warning systems.
  • Galambosi, Szabolcs (Helsingin yliopisto, 2007)
    Inelastic x-ray scattering can be used to study the electronic structure of matter. The x rays scattered from the target both induce and carry information on the electronic excitations taking place in the system. These excitations are the manifestations of the electronic structure and the physics governing the many-body system. This work presents results of non-resonant inelastic x-ray scattering experiments on a range of materials including metallic, insulating and semiconducting compounds as well as an organic polymer. The experiments were carried out at the National Synchrotron Light Source, USA and at the European Synchrotron Radiation Facility, France. The momentum transfer dependence of the experimental valence- and core-electron excitation spectra is compared with the results of theoretical first principles computations that incorporate the electron-hole interaction. A recently developed method for analyzing the momentum transfer dependence of core-electron excitation spectra is studied in detail. This method is based on real space multiple scattering calculations and is used to extract the angular symmetry components of the local unoccupied density of final states.
  • Huotari, Simo (Helsingin yliopisto, 2002)
  • Koski, Aleksis (Helsingin yliopisto, 2016)
    The subject of this thesis is Elliptic PDE's that appear in the fields of Geometric Analysis and The Calculus of Variations, such as the Beltrami equation and its generalizations. The main results are the existence and uniqueness of solutions in function spaces such as the Sobolev-spaces, as well as regularity and properties of solutions. The thesis contains four scientific articles on the subject. The first two articles contain results on generalized Beltrami equations, where the solvability is investigated using functional analytic methods. New results for the corresponding singular integral operators are also found, such as finding the L^2-norm of the Beurling transform for the Dirichlet problem. The third and fourth papers cover properties of solutions to Euler-Lagrange and Hopf-Laplace equations for certain energy functionals. One of the main results is the generalization of the classic Radó-Kneser-Choquet theorem for the p-harmonic energy in the plane. The proof is based on a new subharmonicity result for the Jacobian of a solution, and similar other new subharmonicity results are also obtained in the thesis.
  • Ratvio, Rami (Helsingin yliopisto, 2012)
    The lifestyles of people living in single-family housing areas on the outskirts of the Greater Helsinki Region (GHR) are different from those living in inner city area. The urban structure of the GHR is concentrated in the capital on the one hand, and spread out across the outskirts on the other. Socioeconomic spatial divisions are evident as well-paid and educated residents move to the inner city or the single-family house dominated suburban neighbourhoods depending on their housing preferences and life situations. The following thesis explores how these lifestyles have emerged through the housing choices and daily mobility of the residents living in the new single-family housing areas on the outskirts of the GHR and the inner city. The study shows that, when it comes to lifestyles, residents on the outskirts of the region have different housing preferences and daily mobility patterns when compared with their inner city counterparts. Based on five different case study areas my results show that these differences are related to residents values, preferences and attitudes towards the neighbourhood, on the one hand, and limited by urban structure on the other. This also confirms earlier theoretical analyses and findings from the GHR. Residents who moved to the outskirts of Greater Helsinki Region and the apartment buildings of the inner city were similar in the basic elements of their housing preferences: they sought a safe and peaceful neighbourhood close to the natural environment. However, where housing choices, daily mobility and activities vary different lifestyles develop in both the outskirts and the inner city. More specifically, lifestyles in the city apartment blocks were inherently urban. Liveliness and highest order facilities were appreciated and daily mobility patterns were supported by diverse modes of transportation for the purposes of work, shopping and leisure time. On the outskirts, by contrast, lifestyles were largely post-suburban and child-friendliness appreciated. Due to the heterachical urban structure, daily mobility was more car-dependent since work, shopping and free time activities of the residents are more spread around the region. The urban structure frames the daily mobility on the outskirts of the region, but this is not to say that short local trips replace longer regional ones. This comparative case study was carried out in the single-family housing areas of Sundsberg in Kirkkonummi, Landbo in Helsinki and Ylästö in Vantaa, as well as in the inner city apartment building areas of Punavuori and Katajanokka in Helsinki. The data is comprised of residential surveys, interviews, and statistics and GIS data sets that illustrate regional daily mobility, socio-economic structure and vis-à-vis housing stock.
  • Laakso, Teemu (Helsingin yliopisto, 2011)
    Hamiltonian systems in stellar and planetary dynamics are typically near integrable. For example, Solar System planets are almost in two-body orbits, and in simulations of the Galaxy, the orbits of stars seem regular. For such systems, sophisticated numerical methods can be developed through integrable approximations. Following this theme, we discuss three distinct problems. We start by considering numerical integration techniques for planetary systems. Perturbation methods (that utilize the integrability of the two-body motion) are preferred over conventional "blind" integration schemes. We introduce perturbation methods formulated with Cartesian variables. In our numerical comparisons, these are superior to their conventional counterparts, but, by definition, lack the energy-preserving properties of symplectic integrators. However, they are exceptionally well suited for relatively short-term integrations in which moderately high positional accuracy is required. The next exercise falls into the category of stability questions in solar systems. Traditionally, the interest has been on the orbital stability of planets, which have been quantified, e.g., by Liapunov exponents. We offer a complementary aspect by considering the protective effect that massive gas giants, like Jupiter, can offer to Earth-like planets inside the habitable zone of a planetary system. Our method produces a single quantity, called the escape rate, which characterizes the system of giant planets. We obtain some interesting results by computing escape rates for the Solar System. Galaxy modelling is our third and final topic. Because of the sheer number of stars (about 10^11 in Milky Way) galaxies are often modelled as smooth potentials hosting distributions of stars. Unfortunately, only a handful of suitable potentials are integrable (harmonic oscillator, isochrone and Stäckel potential). This severely limits the possibilities of finding an integrable approximation for an observed galaxy. A solution to this problem is torus construction; a method for numerically creating a foliation of invariant phase-space tori corresponding to a given target Hamiltonian. Canonically, the invariant tori are constructed by deforming the tori of some existing integrable toy Hamiltonian. Our contribution is to demonstrate how this can be accomplished by using a Stäckel toy Hamiltonian in ellipsoidal coordinates.
  • Alves Antunes Soares, Joana Soares (2016)
    Atmospheric aerosols are subject to extensive research, due to their effect on air quality, human health and ecosystems, and hold a pivotal role in the Earth s climate. The first focus of this study is to improve the modelling of aerosol emissions and its dispersion in the atmosphere in both spatial and temporal scales and secondly, to integrate the dispersion modelling with population activity data that leads to exposure metrics. The mathematical models used in this study are fully or partially developed by the Finnish Meteorological Institute: a global-to -mesoscale chemical transport model, SILAM; a local-scale point/line-source dispersion model, UDM/CAR-FMI; and a human exposure and intake fraction assessment model, EXPAND. One of the outcomes of this work was the refinement of the emissions modelling for global-to-mesoscale dispersion model. Firstly, a new parameterisation for bubble-mediated sea salt emissions has been developed by combining and re-assessing widely used formulations and datasets. This parameterisation takes into account the effects of wind speed and seawater salinity and temperature, and can be applicable to particles with dry diameters raging between 0.01 and 10 µm. The parameterization is valid for low-to-moderate wind speed, seawater salinity ranging between 0 and 33 and seawater temperature ranging between -2 and 25 °C. Secondly, the near-real time fire estimation system, IS4FIRES, based on Fire Radiative Power (FRP) data from MODIS, was refined to reduce the overestimation of particulate matter (PM) emissions by including more vegetation types, improving the diurnal variation, removing highly-energetic sources and recalibrating the emission factors. Applying dynamic emission modelling brought more insight to the spatial distribution of these emissions, their contribution to the atmospheric budget, and possible impact on air quality and climate. The modelling shows that sea salt aerosol (SSA) can be transported far over land and contribute up to 6 µg m-3 to PM10 (at annual level), and indicate that the Mediterranean has sharp gradients of concentrations, becoming an interesting area to analyse for climate considerations. For fire, the simulations show the importance of meteorology and vegetation type for the intensity of the emissions. The simulations also show that MODIS FRP is accounting for highly energetic sources as a wildland fire, bringing up to an 80% overestimation in AOD, close to the misattributed sources. The second outcome is related to urban-scale modelling. The emissions for Helsinki Metropolitan Area (HMA) were revised to bring up-to-date the emissions for traffic and energy sectors in use for urban-scale modelling. The EXPAND model was revised to combine concentrations and activity data in order to compute parameters such as population exposure or intake fraction. EXPAND includes improvements of the associated urban emission and dispersion modelling system, time use of population, and infiltration coefficients from outdoor to indoor air. This refinement showed that PM2.5 in HMA is mainly originated from long-range transport, with the largest local contributors being vehicular emissions and shipping (at harbours and its vicinity). At annual level, the population living mostly indoors (home and work) is mainly exposed to PM2.5 with an acutely increased exposure while commuting.