Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

Show full item record



Permalink

http://hdl.handle.net/10138/197743

Citation

Tachmazidou , I , Suveges , D , Min , J L , Ritchie , G R S , Steinberg , J , Walter , K , Iotchkova , V , Schwartzentruber , J , Huang , J , Memari , Y , McCarthy , S , Crawford , A A , Bombieri , C , Cocca , M , Farmaki , A-E , Gaunt , T R , Jousilahti , P , Kooijman , M N , Lehne , B , Malerba , G , Mannisto , S , Matchan , A , Medina-Gomez , C , Metrustry , S J , Nag , A , Ntalla , I , Paternoster , L , Rayner , N W , Sala , C , Scott , W R , Shihab , H A , Southam , L , St Pourcain , B , Traglia , M , Trajanoska , K , Zaza , G , Zhang , W , Artigas , M S , Bansal , N , Benn , M , Chen , Z , Danecek , P , Lin , W-Y , Locke , A , Luan , J , Manning , A K , Mulas , A , Sidore , C , Tybjaerg-Hansen , A , Perola , M , SpiroMeta Consortium , GoT2D Consortium , ArcOGEN Consortium , Understanding Soc Sci Grp & UK10KConsortium 2017 , ' Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits ' , American Journal of Human Genetics , vol. 100 , no. 6 , pp. 865-884 . https://doi.org/10.1016/j.ajhg.2017.04.014

Title: Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits
Author: Tachmazidou, Ioanna; Suveges, Daniel; Min, Josine L.; Ritchie, Graham R. S.; Steinberg, Julia; Walter, Klaudia; Iotchkova, Valentina; Schwartzentruber, Jeremy; Huang, Jie; Memari, Yasin; McCarthy, Shane; Crawford, Andrew A.; Bombieri, Cristina; Cocca, Massimiliano; Farmaki, Aliki-Eleni; Gaunt, Tom R.; Jousilahti, Pekka; Kooijman, Marjolein N.; Lehne, Benjamin; Malerba, Giovanni; Mannisto, Satu; Matchan, Angela; Medina-Gomez, Carolina; Metrustry, Sarah J.; Nag, Abhishek; Ntalla, Ioanna; Paternoster, Lavinia; Rayner, Nigel W.; Sala, Cinzia; Scott, William R.; Shihab, Hashem A.; Southam, Lorraine; St Pourcain, Beate; Traglia, Michela; Trajanoska, Katerina; Zaza, Gialuigi; Zhang, Weihua; Artigas, Maria S.; Bansal, Narinder; Benn, Marianne; Chen, Zhongsheng; Danecek, Petr; Lin, Wei-Yu; Locke, Adam; Luan, Jian'an; Manning, Alisa K.; Mulas, Antonella; Sidore, Carlo; Tybjaerg-Hansen, Anne; Perola, Markus; SpiroMeta Consortium; GoT2D Consortium; ArcOGEN Consortium; Understanding Soc Sci Grp; UK10KConsortium
Contributor: University of Helsinki, University of Helsinki
Date: 2017-06-01
Language: eng
Number of pages: 20
Belongs to series: American Journal of Human Genetics
ISSN: 0002-9297
URI: http://hdl.handle.net/10138/197743
Abstract: Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common-and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.
Subject: ADULT HUMAN HEIGHT
WIDE ASSOCIATION
TARGETED DISRUPTION
RARE VARIANTS
KNOCKOUT MICE
HOMEOBOX GENE
LOW-FREQUENCY
OBESITY
DISEASE
LOCI
1184 Genetics, developmental biology, physiology
3111 Biomedicine
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
1_s2.0_S0002929717301593_main.pdf 2.745Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record