Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose

Show full item record



Permalink

http://hdl.handle.net/10138/208090

Citation

Mohan-Anupama Pawar , P , Derba-Maceluch , M , Chong , S-L , Gomez , L D , Miedes , E , Banasiak , A , Ratke , C , Gaertner , C , Mouille , G , McQueen-Mason , S J , Molina , A , Sellstedt , A , Tenkanen , T M & Mellerowicz , E J 2016 , ' Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose ' , Plant biotechnology journal , vol. 14 , no. 1 , pp. 387-397 . https://doi.org/10.1111/pbi.12393

Title: Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose
Author: Mohan-Anupama Pawar , Prashant; Derba-Maceluch, Marta; Chong, Sun-Li; Gomez, Leonardo D.; Miedes, Eva; Banasiak, Alicja; Ratke, Christine; Gaertner, Cyril; Mouille, Gregory; McQueen-Mason, Simon J.; Molina, Antonio; Sellstedt, Anita; Tenkanen, Tiina Maija; Mellerowicz, Ewa J.
Contributor organization: Department of Food and Nutrition
Carbohydrate Chemistry and Enzymology
Food Sciences
Date: 2016
Language: eng
Number of pages: 11
Belongs to series: Plant biotechnology journal
ISSN: 1467-7644
DOI: https://doi.org/10.1111/pbi.12393
URI: http://hdl.handle.net/10138/208090
Abstract: Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a beta-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded similar to 70% more ethanol compared with wild type. Plants expressing 35S: AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S: AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.
Subject: 1183 Plant biology, microbiology, virology
acetyl xylan esterase
biofuels
saccharification
O-acetylation
glucuronoxylan
secondary cell wall
WRKY60 TRANSCRIPTION FACTORS
CELL WALL POLYSACCHARIDES
O-ACETYLATION
SACCHAROMYCES-CEREVISIAE
RELATIVE QUANTIFICATION
ENZYMATIC-HYDROLYSIS
INCREASED RESISTANCE
XYLOSE FERMENTATION
ASPERGILLUS-NIGER
BOTRYTIS-CINEREA
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
Pawar_et_al_2015_Plant_Biotechnology_Journal.pdf 484.2Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record