Yliopiston etusivulle Suomeksi På svenska In English Helsingin yliopisto

Capillary electrochromatography: a versatile instrumental technique for nanodomain interaction studies

Show full item record

Files in this item

Files Description Size Format View/Open
capillary.pdf 2.104Mb PDF View/Open
Use this URL to link or cite this item: http://urn.fi/URN:ISBN:978-952-10-5969-8
Vie RefWorksiin
Title: Capillary electrochromatography: a versatile instrumental technique for nanodomain interaction studies
Author: D'Ulivo, Lucia
Contributor: University of Helsinki, Faculty of Science, Department of Chemistry
Thesis level: Doctoral dissertation (article-based)
Abstract: This doctoral thesis describes the development of a miniaturized capillary electrochromatography (CEC) technique suitable for the study of interactions between various nanodomains of biological importance. The particular focus of the study was low-density lipoprotein (LDL) particles and their interaction with components of the extracellular matrix (ECM). LDL transports cholesterol to the tissues through the blood circulation, but when the LDL level becomes too high the particles begin to permeate and accumulate in the arteries. Through binding sites on apolipoprotein B-100 (apoB-100), LDL interacts with components of the ECM, such as proteoglycans (PGs) and collagen, in what is considered the key mechanism in the retention of lipoproteins and onset of atherosclerosis. Hydrolytic enzymes and oxidizing agents in the ECM may later successively degrade the LDL surface. Metabolic diseases such as diabetes may provoke damage of the ECM structure through the non-enzymatic reaction of glucose with collagen. In this work, fused silica capillaries of 50 micrometer i.d. were successfully coated with LDL and collagen, and steroids and apoB-100 peptide fragments were introduced as model compounds for interaction studies. The LDL coating was modified with copper sulphate or hydrolytic enzymes, and the interactions of steroids with the native and oxidized lipoproteins were studied. Lipids were also removed from the LDL particle coating leaving behind an apoB-100 surface for further studies. The development of collagen and collagen decorin coatings was helpful in the elucidation of the interactions of apoB-100 peptide fragments with the primary ECM component, collagen. Furthermore, the collagen I coating provided a good platform for glycation studies and for clarification of LDL interactions with native and modified collagen. All methods developed are inexpensive, requiring just small amounts of biomaterial. Moreover, the experimental conditions in CEC are easily modified, and the analyses can be carried out in a reasonable time frame. Other techniques were employed to support and complement the CEC studies. Scanning electron microscopy and atomic force microscopy provided crucial visual information about the native and modified coatings. Asymmetrical flow field-flow fractionation enabled size measurements of the modified lipoproteins. Finally, the CEC results were exploited to develop new sensor chips for a continuous flow quartz crystal microbalance technique, which provided complementary information about LDL ECM interactions. This thesis demonstrates the potential of CEC as a valuable and flexible technique for surface interaction studies. Further, CEC can serve as a novel microreactor for the in situ modification of LDL and collagen coatings. The coatings developed in this study provide useful platforms for a diversity of future investigations on biological nanodomains.Not available
URI: URN:ISBN:978-952-10-5969-8
http://hdl.handle.net/10138/21019
Date: 2010-01-29
Copyright information: This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
This item appears in the following Collection(s)

Show full item record

Search Helda


Advanced Search

Browse

My Account