Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/215616

Lähdeviite

Levo , E , Granberg , F , Fridlund , C , Nordlund , K & Djurabekova , F 2017 , ' Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys ' , Journal of Nuclear Materials , vol. 490 , pp. 323-332 . https://doi.org/10.1016/j.jnucmat.2017.04.023

Julkaisun nimi: Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys
Tekijä: Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.
Muu tekijä: University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics

Päiväys: 2017-07
Kieli: eng
Sivumäärä: 10
Kuuluu julkaisusarjaan: Journal of Nuclear Materials
ISSN: 0022-3115
DOI-tunniste: https://doi.org/10.1016/j.jnucmat.2017.04.023
URI: http://hdl.handle.net/10138/215616
Tiivistelmä: Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity. (C) 2017 Elsevier B.V. All rights reserved.
Avainsanat: Radiation
Damage
Equiatomic
Multicomponent
Alloy
HIGH-ENTROPY ALLOYS
COLLISION CASCADES
FCC METALS
DISPLACEMENT
IRRADIATION
114 Physical sciences
Tekijänoikeustiedot:


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
preprint.pdf 6.042MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot