Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

Show simple item record

dc.contributor University of Helsinki, Department of Physics en
dc.contributor University of Helsinki, Department of Physics en
dc.contributor University of Helsinki, Department of Physics en
dc.contributor University of Helsinki, Department of Physics en
dc.contributor University of Helsinki, Department of Physics en
dc.contributor.author Levo, E.
dc.contributor.author Granberg, F.
dc.contributor.author Fridlund, C.
dc.contributor.author Nordlund, K.
dc.contributor.author Djurabekova, F.
dc.date.accessioned 2017-08-25T12:03:01Z
dc.date.available 2017-08-25T12:03:01Z
dc.date.issued 2017-07
dc.identifier.citation Levo , E , Granberg , F , Fridlund , C , Nordlund , K & Djurabekova , F 2017 , ' Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys ' , Journal of Nuclear Materials , vol. 490 , pp. 323-332 . https://doi.org/10.1016/j.jnucmat.2017.04.023 en
dc.identifier.issn 0022-3115
dc.identifier.other PURE: 88070117
dc.identifier.other PURE UUID: a0dd7b66-e4aa-4ac7-b77a-e53fef21178a
dc.identifier.other WOS: 000403132300037
dc.identifier.other Scopus: 85018775445
dc.identifier.other ORCID: /0000-0002-5828-200X/work/39202732
dc.identifier.other ORCID: /0000-0001-6244-1942/work/39203299
dc.identifier.other ORCID: /0000-0002-2424-1912/work/38145225
dc.identifier.other ORCID: /0000-0001-9058-5652/work/39205329
dc.identifier.uri http://hdl.handle.net/10138/215616
dc.description.abstract Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity. (C) 2017 Elsevier B.V. All rights reserved. en
dc.format.extent 10
dc.language.iso eng
dc.relation.ispartof Journal of Nuclear Materials
dc.rights en
dc.subject Radiation en
dc.subject Damage en
dc.subject Equiatomic en
dc.subject Multicomponent en
dc.subject Alloy en
dc.subject HIGH-ENTROPY ALLOYS en
dc.subject COLLISION CASCADES en
dc.subject FCC METALS en
dc.subject DISPLACEMENT en
dc.subject IRRADIATION en
dc.subject 114 Physical sciences en
dc.title Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys en
dc.type Article
dc.description.version Peer reviewed
dc.identifier.doi https://doi.org/10.1016/j.jnucmat.2017.04.023
dc.type.uri info:eu-repo/semantics/other
dc.type.uri info:eu-repo/semantics/acceptedVersion
dc.contributor.pbl
dc.contributor.pbl

Files in this item

Total number of downloads: Loading...

Files Size Format View
preprint.pdf 6.042Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record