Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption

Show full item record



Permalink

http://hdl.handle.net/10138/218280

Citation

Taipale , S J , Vuorio , K , Strandberg , U , Kahilainen , K K , Jarvinen , M , Hiltunen , M , Peltomaa , E & Kankaala , P 2016 , ' Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption ' , Environment International , vol. 96 , pp. 156-166 . https://doi.org/10.1016/j.envint.2016.08.018

Title: Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption
Author: Taipale, S. J.; Vuorio, K.; Strandberg, U.; Kahilainen, K. K.; Jarvinen, M.; Hiltunen, M.; Peltomaa, E.; Kankaala, P.
Contributor: University of Helsinki, Lammi Biological Station
University of Helsinki, Environmental Sciences
University of Helsinki, Environmental Sciences
Date: 2016-11
Language: eng
Number of pages: 11
Belongs to series: Environment International
ISSN: 0160-4120
URI: http://hdl.handle.net/10138/218280
Abstract: Fish are an important source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for birds, mammals and humans. In aquatic food webs, these highly unsaturated fatty acids (HUFA) are essential for many physiological processes and mainly synthetized by distinct phytoplankton taxa. Consumers at different trophic levels obtain essential fatty acids from their diet because they cannot produce these sufficiently de novo. Here, we evaluated how the increase in phosphorus concentration (eutrophication) or terrestrial organic matter inputs (brownification) change EPA and DHA content in the phytoplankton. Then, we evaluated whether these changes can be seen in the EPA and DHA content of piscivorous European perch (Perca fluviatilis), which is a widely distributed species and commonly consumed by humans. Data from 713 lakes showed statistically significant differences in the abundance of EPA- and DHA-synthesizing phytoplankton as well as in the concentrations and content of these essential fatty acids among oligo-mesotrophic, eutrophic and dystrophic lakes. The EPA and DHA content of phytoplankton biomass (mg HUFA g(-1)) was significantly lower in the eutrophic lakes than in the oligo-mesotrophic or dystrophic lakes. We found a strong significant correlation between the DHA content in the muscle of piscivorous perch and phytoplankton DHA content (r = 0.85) as well with the contribution of DHA-synthesizing phytoplankton taxa (r = 0.83). Among all DHA-synthesizing phytoplankton this correlation was the strongest with the dinoflagellates (r = 0.74) and chrysophytes (r = 0.70). Accordingly, the EPA + DHA content of perch muscle decreased with increasing total phosphorus (r(2) = 0.80) and dissolved organic carbon concentration (r(2) = 0.83) in the lakes. Our results suggest that although eutrophication generally increase biomass production across different trophic levels, the high proportion of low-quality primary producers reduce EPA and DHA content in the food web up to predatory fish. Ultimately, it seems that lake eutrophication and brownification decrease the nutritional quality of fish for human consumers. (C) 2016 The Authors. Published by Elsevier Ltd.
Subject: DOC
Phosphorus
Phytoplankton
Aquatic food webs
Perch
EPA
DHA
Environmental change
Human nutrition
PERCH PERCA-FLUVIATILIS
DISSOLVED ORGANIC-CARBON
FISH COMMUNITY STRUCTURE
FRESH-WATER MICROALGAE
EURASIAN PERCH
EUROPEAN LAKES
EUDIAPTOMUS-GRACILIS
PLANKTONIC ALGAE
FINNISH LAKES
BOREAL LAKES
1181 Ecology, evolutionary biology
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
1_s2.0_S0160412016303063_main.pdf 1.254Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record