SOM clustering of 21-year data of a small pristine boreal lake

Show full item record



Permalink

http://hdl.handle.net/10138/221346

Citation

Voutilainen , A & Arvola , L M J 2017 , ' SOM clustering of 21-year data of a small pristine boreal lake ' , Knowledge and Management of Aquatic Ecosystems , vol. 2017 , no. 418 . https://doi.org/10.1051/kmae/2017027

Title: SOM clustering of 21-year data of a small pristine boreal lake
Author: Voutilainen, Ari; Arvola, Lauri Matti Juhani
Contributor: University of Helsinki, Lammi Biological Station
Date: 2017-08
Language: eng
Number of pages: 16
Belongs to series: Knowledge and Management of Aquatic Ecosystems
ISSN: 1961-9502
URI: http://hdl.handle.net/10138/221346
Abstract: In order to improve our understanding of the connections between the biological processes and abiotic factors, we clustered complex long-term ecological data with the self-organizing map (SOM) technique. The available 21-year long (1990–2010) data set from a small pristine humic lake, in southern Finland, consisted of 27 meteorological, physical, chemical, and biological variables. The SOM grouped the data into three categories of which the first one was the largest with 12 variables, including metabolic processes, dissolved oxygen, total nitrogen and phosphorus, chlorophyll a, and taxonomical groups of plankton known to exist in spring. The second cluster comprised of water temperature and precipitation together with cyanobacteria, algae, rotifers, and crustacean zooplankton, an association emphasized with summer. The third cluster was consisted of six physical and chemical variables linked to autumn, and to the effects of inflow and/or water column mixing. SOM is a useful method for grouping the variables of such a large multi-dimensional data set, especially, when the purpose is to draw comprehensive conclusions rather than to search for associations across sporadic variables. Sampling should minimize the number of missing values. Even flexible statistical techniques, such as SOM, are vulnerable to biased results due to incomplete data.
Subject: 1181 Ecology, evolutionary biology
boreal lake
data partitioning
ecological complexity
long-term data
self-organizing map
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
Voutilainen_Arv ... quat._Ecosyst._418_36..pdf 6.496Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record