Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions

Show simple item record

dc.contributor.author Møller, Kristian H.
dc.contributor.author Otkjaer, Rasmus V.
dc.contributor.author Hyttinen, Noora
dc.contributor.author Kurten, Theo Christian
dc.contributor.author Kjaergaard, Henrik G.
dc.date.accessioned 2017-09-21T12:47:00Z
dc.date.available 2017-09-21T12:47:00Z
dc.date.issued 2016
dc.identifier.citation Møller , K H , Otkjaer , R V , Hyttinen , N , Kurten , T C & Kjaergaard , H G 2016 , ' Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions ' , Journal of Physical Chemistry A , vol. 120 , no. 51 , pp. 10072-10087 . https://doi.org/10.1021/acs.jpca.6b09370
dc.identifier.other PURE: 78427104
dc.identifier.other PURE UUID: 4f1eb425-0b7c-4c1a-beb4-3f5a8c175abc
dc.identifier.other WOS: 000391160200002
dc.identifier.other Scopus: 85018181898
dc.identifier.other ORCID: /0000-0002-6416-4931/work/29994104
dc.identifier.other ORCID: /0000-0002-6025-5959/work/29995289
dc.identifier.uri http://hdl.handle.net/10138/224448
dc.description.abstract Based on a small test system, (R)-CH(OH)(OO center dot)CH2CHO, we have developed a cost-effective approach to the practical implementation of multiconformer transition state theory for peroxy radical hydrogen shift reactions at atmospherically relevant temperatures. While conformer searching is crucial for accurate reaction rates, an energy cutoff can be used to significantly reduce the computational cost with little loss of accuracy. For the reaction barrier, high-level calculations are needed, but the highest level of electronic structure theory is not necessary for the relative energy between conformers. Improving the approach to both transition state theory and electronic structure theory decreases the calculated reaction rate significantly, so low-level calculations can be used to rule out slow reactions. Further computational time can be saved by approximating the tunneling coefficients for each transition state by only that of the lowest-energy transition state. Finally, we test and validate our approach using higher-level theoretical values for our test system and existing experimental results for additional peroxy radical hydrogen shift reactions in three slightly larger systems. en
dc.format.extent 16
dc.language.iso eng
dc.relation.ispartof Journal of Physical Chemistry A
dc.rights other
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject 116 Chemical sciences
dc.title Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions en
dc.type Article
dc.contributor.organization Department of Chemistry
dc.description.reviewstatus Peer reviewed
dc.relation.doi https://doi.org/10.1021/acs.jpca.6b09370
dc.relation.issn 1089-5639
dc.rights.accesslevel openAccess
dc.type.version publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
acs.jpca.6b09370.pdf 655.1Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record