TIMMA-R : an R package for predicting synergistic multi-targeted drug combinations in cancer cell lines or patient-derived samples

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/225114

Lähdeviite

He , L , Wennerberg , K , Aittokallio , T & Tang , J 2015 , ' TIMMA-R : an R package for predicting synergistic multi-targeted drug combinations in cancer cell lines or patient-derived samples ' , Bioinformatics , vol. 31 , no. 11 , pp. 1866-1868 . https://doi.org/10.1093/bioinformatics/btv067

Julkaisun nimi: TIMMA-R : an R package for predicting synergistic multi-targeted drug combinations in cancer cell lines or patient-derived samples
Tekijä: He, Liye; Wennerberg, Krister; Aittokallio, Tero; Tang, Jing
Tekijän organisaatio: Institute for Molecular Medicine Finland
Krister Wennerberg / Principal Investigator
Tero Aittokallio / Principal Investigator
Bioinformatics
Päiväys: 2015-06-01
Kieli: eng
Sivumäärä: 3
Kuuluu julkaisusarjaan: Bioinformatics
ISSN: 1367-4803
DOI-tunniste: https://doi.org/10.1093/bioinformatics/btv067
URI: http://hdl.handle.net/10138/225114
Tiivistelmä: Network pharmacology-based prediction of multi-targeted drug combinations is becoming a promising strategy to improve anticancer efficacy and safety. We developed a logic-based network algorithm, called Target Inhibition Interaction using Maximization and Minimization Averaging (TIMMA), which predicts the effects of drug combinations based on their binary drug-target interactions and single-drug sensitivity profiles in a given cancer sample. Here, we report the R implementation of the algorithm (TIMMA-R), which is much faster than the original MATLAB code. The major extensions include modeling of multiclass drug-target profiles and network visualization. We also show that the TIMMA-R predictions are robust to the intrinsic noise in the experimental data, thus making it a promising high-throughput tool to prioritize drug combinations in various cancer types for follow-up experimentation or clinical applications.
Avainsanat: DISCOVERY
SENSITIVITY
RESOURCE
3122 Cancers
1182 Biochemistry, cell and molecular biology
Vertaisarvioitu: Kyllä
Tekijänoikeustiedot: cc_by_nc
Pääsyrajoitteet: openAccess
Rinnakkaistallennettu versio: publishedVersion


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
2d8301d0_2f80_4e20_a46a_4f6dde6274db.pdf 535.4KB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot