How to assemble contractile actomyosin bundles in cells?

Näytä kaikki kuvailutiedot

Permalink

http://urn.fi/URN:ISBN:978-951-51-3734-0
Julkaisun nimi: How to assemble contractile actomyosin bundles in cells?
Tekijä: Gateva, Gergana
Muu tekijä: Helsingin yliopisto, bio- ja ympäristötieteellinen tiedekunta, biotieteiden laitos
Opinnäytteen taso: Väitöskirja (artikkeli)
Tiivistelmä: The ability of cells to migrate, adhere, and contract is an essential feature, governing basically every process in the human body. These include fundamental functions such as development, muscle contraction, immune responses, wound healing, and a plethora of diseases including cancer metastasis, vascular diseases, and cardiomyopathies. Contractile actomyosin bundles are the central cellular structures, which enable the cell to perform all these processes, and thus it is crucial to understand how such structures are assembled in cells. Assembly of actomyosin bundles both in non-muscle and in muscle cells is regulated by a multitude of proteins, acting synchronously in a fascinating complexity. Many aspects of this process have remained mysterious, because of the sheer number of the involved actin-binding proteins, the intricate signalling pathways, and the complexity of the underlying interactions. This thesis aimed at understanding of some of the fundamental processes behind the assembly of contractile structures in non-muscle cells (human osteosarcoma cells U2OS), and in heart muscle cells (primary rat cardiomyocytes). Previous studies revealed that contractile actomyosin bundles in U2OS cells, called ventral stress fibers, are generated from a network of precursors, named dorsal stress fibers and transverse arcs. This work revealed that the tropomyosin family proteins (Tpm) play central role in stress fiber assembly. Our studies on U2OS cells indicate that four functionally distinct tropomyosins orchestrate stress fiber assembly. Tpms 1.6/1.7, Tpm 2.1, and Tpms 3.1/ 3.2 stabilize specific stress fiber regions. In contrast, Tpm 4.2 regulates the recruitment of myosin II to diaphanous (Dia) 2 formin-nucleated actin filament population in stress fiber precursors. Our in vitro experiments revealed that these tropomyosin isoforms possess an intrinsic ability to segregate to different actin filaments and bind F-actin with distinct dynamics. Our results revealed that these tropomyosins determine some of the biochemical properties of actin filaments, such as their ability to associate with non-muscle myosin II and actin depolymerizing factor (ADF)/cofilin. Additionally, our studies demonstrated that the interaction between palladin and vasodilator-stimulated phosphoprotein (VASP) promotes dorsal stress fiber assembly. In contrast, the tension generated by transverse arcs inhibits this process. Tension also controls the length of ventral stress fibers and inhibits ADF/cofilin-mediated stress fiber disassembly. Furthermore, our studies in primary rat cardiomyocytes revealed that ADF/cofilins are also crucial for the length regulation and proper function of muscle sarcomeres. Collectively these studies reveal important biochemical and mechanobiological principles that regulate the assembly of contractile actin bundles in non-muscle and in muscle cells.Solujen kyky liikkua, tarttua ympäristöönsä ja muuttaa muotoaan on välttämätöntä useissa elimistön normaaleissa prosesseissa, kuten yksilönkehityksessä, lihasten supistumisessa, immunologisissa tapahtumissa, ja haavojen paranemisessa. Nämä solubiologiset prosessit ovat keskeisiä myös monissa tautitiloissa kuten syöpien leviämisessä, lihas- ja verisuonisairauksissa. Supistuvat aktomyosiini-kimput ovat tärkeitä solujen rakenteita jotka osallistuvat näihin prosesseihin. Aktomyosiini-kimppujen muodostumista sekä lihassoluissa että muissa solutyypeissä säätelee suuri joukko erilaisia proteiineja, jotka toimivat yhteistyössä keskenään. Aktomyosiini-kimppujen muodostumismekanismit ovat kuitenkin huonosti tunnettuja, pääosin siksi että ne vaativat erilaisten proteiinien ja viestinvälitysreittien monimutkaisia vuorovaikutuksia. Tämän väitöskirjatyön tavoite oli ymmärtää niitä mekanismeja, joilla supistuvat aktomyosiini-kimput muodostuvat lihassoluissa (rotan kardiomyosyyteissä) sekä muissa solutyypeissä (ihmisen U2OS osteosarkooma-soluissa). Aiemmat tutkimukset osoittivat että U2OS-solujen supistuvat aktomyosiini-kimput, joita kutsutaan ventraaleiksi stressisäikeiksi, muodostuvat kahdesta muusta solujen aktiini-kimppurakenteesta, dorsaaleista stressisäikeistä sekä poikittaisista stressisäikeistä. Väitöskirjatutkimuksissani osoitin, että tropomyosiini-perheen aktiinia sitovilla proteiineilla on tärkeä rooli tässä prosessissa. Tutkimuksemme paljastivat että U2OS soluissa neljä toiminnallisesti erilaista tropomyosiinia (Tpm1.6, Tpm1.7, Tpm2.1 ja Tpm3.1/3.1) stabiloi stressisäieverkoston eri osia. Sen sijaan, viides stressisäikeisiin assosioitunut tropomyosiini (Tpm4.2) osallistuu myosiini II molekyylien rekrytoimiseen Dia2-formiinin tuottamiin aktiini-säikeisiin. Biokemialliset kokeemme osoittivat että nämä tropomyosiinit ryhmittyvät spontaanisti eri aktiini-säikeisiin, ja sitoutuvat niihin erilaisilla kinetiikoilla. Tutkimuksemme myös paljastivat, että tropomyosiinit vaikuttavat merkittävästi aktiini-säikeiden ominaisuuksiin, kuten niiden kykyyn assosioitua myosiini II:n ja ADF/kofiliinien kanssa. Tämän lisäksi osoitimme, että palladin ja VASP proteiinien välinen vuorovaikutus on tärkeää dorsaalien stressisäikeiden kasvulle. Sen sijaan poikittaisten stressisäikeiden aiheuttama jännite inhiboi tätä dorsaalien stressisäikeiden kasvua, sekä estää ADF/kofiliini-välitteistä stressisäikeiden purkamista. Tutkimuksemme kardiomyosyyteillä osoittivat, että myös lihassoluluissa ADF/kofiliineilla on keskeinen rooli aktiini-säikeiden pituuden säätelijänä ja täten myös sarkomeerien organisaatiossa ja toiminnassa. Yhdessä nämä tutkimukset paljastivat tärkeitä biokemiallisia ja mekanobiologisia periaatteita, jotka säätelevät supistuvien aktomyosiini-kimppujen muodostumista eri solutyypeissä.
URI: URN:ISBN:978-951-51-3734-0
http://hdl.handle.net/10138/226025
Päiväys: 2017-11-17
Avainsanat:
Tekijänoikeustiedot: Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
Gateva_thesis.pdf 6.507MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot