Evaluating genetic drift in time-series evolutionary analysis

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/229854

Citation

Nene , N R , Mustonen , V & Illingworth , C J R 2018 , ' Evaluating genetic drift in time-series evolutionary analysis ' , Journal of Theoretical Biology , vol. 437 , pp. 51-57 . https://doi.org/10.1016/j.jtbi.2017.09.021

Titel: Evaluating genetic drift in time-series evolutionary analysis
Författare: Nene, Nuno R.; Mustonen, Ville; Illingworth, Christopher J. R.
Upphovmannens organisation: Biosciences
Datum: 2018-01-21
Språk: eng
Sidantal: 7
Tillhör serie: Journal of Theoretical Biology
ISSN: 0022-5193
DOI: https://doi.org/10.1016/j.jtbi.2017.09.021
Permanenta länken (URI): http://hdl.handle.net/10138/229854
Abstrakt: The Wright-Fisher model is the most popular population model for describing the behaviour of evolutionary systems with a finite population size. Approximations have commonly been used but the model itself has rarely been tested against time-resolved genomic data. Here, we evaluate the extent to which it can be inferred as the correct model under a likelihood framework. Given genome-wide data from an evolutionary experiment, we validate the Wright-Fisher drift model as the better option for describing evolutionary trajectories in a finite population. This was found by evaluating its performance against a Gaussian model of allele frequency propagation. However, we note a range of circumstances under which standard Wright-Fisher drift cannot be correctly identified. (C) 2017 The Author(s). Published by Elsevier Ltd.
Subject: Genetic drift
Time-resolved genome sequence data
Wright-Fisher model
Experimental evolution
EFFECTIVE POPULATION-SIZE
GENERAL DIPLOID SELECTION
WRIGHT-FISHER MODEL
DROSOPHILA-MELANOGASTER
FREQUENCY
INFERENCE
DYNAMICS
LINKAGE
APPROXIMATION
TRANSITION
1182 Biochemistry, cell and molecular biology
Referentgranskad: Ja
Licens: cc_by
Användningsbegränsning: openAccess
Parallelpublicerad version: publishedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Evaluating_2018.pdf 611.6Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post