Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in Listeria monocytogenes

Show full item record



Permalink

http://hdl.handle.net/10138/230108

Citation

Pöntinen , A , Aalto-Araneda , M , Lindström , M & Korkeala , H 2017 , ' Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in Listeria monocytogenes ' , Msphere , vol. 2 , no. 6 , e00364-17 . https://doi.org/10.1128/mSphere.00364-17

Title: Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in Listeria monocytogenes
Author: Pöntinen, Anna; Aalto-Araneda, Mariella; Lindström, Miia; Korkeala, Hannu
Contributor organization: Departments of Faculty of Veterinary Medicine
Food Hygiene and Environmental Health
Miia Lindström / Principal Investigator
Hannu Korkeala / Principal Investigator
Date: 2017
Language: eng
Number of pages: 13
Belongs to series: Msphere
ISSN: 2379-5042
DOI: https://doi.org/10.1128/mSphere.00364-17
URI: http://hdl.handle.net/10138/230108
Abstract: Listeria monocytogenes is one of the most heat-resistant non-sporeforming food-borne pathogens and poses a notable risk to food safety, particularly when mild heat treatments are used in food processing and preparation. While general heat stress properties and response mechanisms of L. monocytogenes have been described, accessory mechanisms providing particular L. monocytogenes strains with the advantage of enhanced heat resistance are unknown. Here, we report plasmidmediated heat resistance of L. monocytogenes for the first time. This resistance is mediated by the ATP-dependent protease ClpL. We tested the survival of two wildtype L. monocytogenes strains-both of serotype 1/2c, sequence type ST9, and high sequence identity-at high temperatures and compared their genome composition in order to identify genetic mechanisms involved in their heat survival phenotype. L. monocytogenes AT3E was more heat resistant (0.0 CFU/ml log(10) reduction) than strain AL4E (1.4 CFU/ml log(10) reduction) after heating at 55 degrees C for 40 min. A prominent difference in the genome compositions of the two strains was a 58-kb plasmid (pLM58) harbored by the heat-resistant AT3E strain, suggesting plasmid-mediated heat resistance. Indeed, plasmid curing resulted in significantly decreased heat resistance (1.1 CFU/ml log(10) reduction) at 55 degrees C. pLM58 harbored a 2,115-bp open reading frame annotated as an ATP-dependent protease (ClpL)-encoding clpL gene. Introducing the clpL gene into a natively heat-sensitive L. monocytogenes strain (1.2 CFU/ml log(10) reduction) significantly increased the heat resistance of the recipient strain (0.4 CFU/ml log(10) reduction) at 55 degrees C. Plasmid-borne ClpL is thus a potential predictor of elevated heat resistance in L. monocytogenes. IMPORTANCE Listeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures-with plasmid-borne ClpL being a potential predictor of elevated heat resistance.
Subject: ClpL
Listeria
heat stress
heat tolerance
plasmid-mediated resistance
protease
stress response
BENZALKONIUM CHLORIDE RESISTANCE
PHAGE SEARCH TOOL
GENETIC-CHARACTERIZATION
ANTIBIOTIC-RESISTANCE
FOOD
ACID
TOLERANCE
CADMIUM
STRAINS
STRESS
1183 Plant biology, microbiology, virology
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
e00364_17.full.pdf 826.4Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record