Nuclear structure functions at a future electron-ion collider

Show full item record



Aschenauer , E C , Fazio , S , Lamont , M A C , Paukkunen , H & Zurita , P 2017 , ' Nuclear structure functions at a future electron-ion collider ' , Physical Review D , vol. 96 , no. 11 , 114005 .

Title: Nuclear structure functions at a future electron-ion collider
Author: Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; Paukkunen, H.; Zurita, P.
Contributor organization: Helsinki Institute of Physics
Date: 2017-12-07
Language: eng
Number of pages: 20
Belongs to series: Physical Review D
ISSN: 2470-0010
Abstract: The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x-robust experimental constraints below x similar to 10(-2) at low resolution scale Q(2) are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in Deep Inelastic Scattering (DIS) measurements down to x similar to 10(-5) at perturbative resolution scales. The construction of an electron-ion collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the present paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-toleading order global fit of nuclear Parton Distribution Functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon parton distribution function, the partonic component most prone to nonlinear effects at low Q(2). In comparison to the current knowledge, we find that the gluon parton distribution function can be measured at an EIC with significantly reduced uncertainties.
114 Physical sciences
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
PhysRevD.96.114005.pdf 3.799Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record