Exploring the dynamics of the biocybernetic loop in physiological computing

Visa fullständig post

Permalink

http://urn.fi/URN:ISBN:978-951-51-4139-2
Titel: Exploring the dynamics of the biocybernetic loop in physiological computing
Author: Kosunen, Ilkka
Medarbetare: Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för datavetenskap
Nivå: Doktorsavhandling (sammanläggning)
Tillhör serie: Series of publications A / Department of Computer Science, University of Helsinki - URN:ISSN:1238-8645
Abstrakt: Physiological computing is a highly multidisciplinary emerging field in which the spread of results across several application areas and disciplines creates a challenge of combining the lessons learned from various studies. The thesis comprises diverse publications that together create a privileged position for contributing to a common understanding of the roles and uses of physiological computing systems, generalizability of results across application areas, the theoretical grounding of the field (as with the various ways the psychophysiological states of the user can be modeled), and the emerging data analysis approaches from the domain of machine learning. The core of physiological computing systems has been built around the concept of biocybernetic loop, aimed at providing real-time adaptation to the cognitions, motivations, and emotions of the user. However, the traditional concept of the biocybernetic loop has been both self-regulatory and immediate; that is, the system adapts to the user immediately. The thesis presents an argument that this is too narrow a view of physiological computing, and it explores scenarios wherein the physiological signals are used not only to adapt to the user but to aid system developers in designing better systems, as well as to aid other users of the system. The thesis includes eight case studies designed to answer three research questions: 1) what are the various dynamics the biocybernetic loop can display, 2) how do the changes in loop dynamics affect the way the user is represented and modeled, and 3) how do the choices of loop dynamics and user representations affect the selection of machine learning methods and approaches? To answer these questions, an analytical model for physiological computing is presented that divides each of the physiological computing systems into five separate layers. The thesis presents three main findings corresponding to the three research questions: Firstly, the case studies show that physiological computing extends beyond the simple real-time self-regulatory loop. Secondly, the selected user representations seem to correlate with the type of loop dynamics. Finally, the case studies show that the machine learning approaches are implemented at the level of feature generation and are used when the loop diverges from the traditional real-time and self-regulatory dynamics into systems where the adaptation happens in the future.Perinteinen ihmisen ja tietokoneen vuorovaikutus on hyvin epäsymmetristä: tietokone voi esittää ihmiselle monimutkaista audiovisuaalista informaatiota kun taas ihmisen kommunikaatio koneen suuntaan on rajattu näppäimistöön ja hiireen. Samoin, vaikka ihmisellä on mahdollisuus saada informaatiota tietokoneen sisäisestä tilasta, kuten muistin ja prosessorin käyttöasteesta, ei tietokoneella ole vastaavaa mahdollisuutta tutkia ihmisen sisäisiä tiloja kuten tunteita. Mittaamalla reaaliajassa ihmisen fysiologisia signaaleja nämä molemmat ongelmat voidaan ratkaista: näppäimistön ja hiiren lisäksi tietokone saa suuren määrän informaatiota ihmisen kognitiivisista ja affektiivisista tiloista. Esimerkiksi mittaamalla ihmisen sykettä tai ihon sähkönjohtavuutta voi tietokone päätellä onko käyttäjä juuri nyt kiihtynyt tai rentoutunut. Tällaista fysiologisten signaalien reaaliaikaista hyödyntämistä ihmisen ja koneen vuorovaikutuksessa on tutkittu onnistuneesti monessa eri yhteyksissä: autonkuljettajien väsymystä voidaan mitata ja tarvittaessa varoittaa ajajaa, tietokonepelaajia mittaamalla on mahdollista säätää pelin vaikeustasoa sopivaksi ja älykello voi reagoida käyttäjän stressiin ehdottamalla rentoutumisharjoitusta. Näitä tapauksia yhdistää se, että käyttäjän fysiologisia signaaleja käytetään reaaliajassa sopeuttamaan järjestelmä käyttäjän itsensä tarpeisiin. Tällaista järjestelmän sopeuttamista reaaliajassa käyttäjän fysiologisten signaalien perusteella kutsutaan “biokyberneettiseksi silmukaksi” (biocybernetic loop). Biokyberneettisen silmukka on perinteisesti määritelty systeemin sopeuttamiseen yksittäisen käyttäjän sen hetkisen fysiologisen vasteen mukaan. Väitöskirjan tarkoitus on tutkia kuinka biokyberneettisen silmukan dynamiikkaa voidaan laajentaa sekä tilassa (voiko silmukka käsittää useita käyttäjiä) ja ajassa (voiko silmukan idea toimia myös ei-reaaliajassa). Erityisesti keskitytään tutkimaan kuinka muutokset silmukan dynamiikassa vaikuttavat silmukan toteutuksen yksityiskohtiin: kannattaako käyttäjää mallintaa eri tavoin ja ovatko tietyn tyyppiset silmukat soveltuvampia koneoppimiseen verrattuna ns. käsintehtyyn ratkaisuun. Väitöskirja sisältää kahdeksan käyttäjätutkimusta, jotka peilaavat biokyberneettisen silmukan käyttäytymistä erilaisissa konteksteissa. Tutkimukset osoittavat, että biokyberneettistä silmukkaa voidaan käyttää myös osana järjestelmän suunnittelua kun fysiologisten mittausten tulokset ohjataan järjestelmän kehittelijöille, ja järjestelmän muiden käyttäjien auttamiseen suosittelujärjestelmissä, joissa käyttäjän antamaa implisiittistä palautetta käytetään hyväksi suositeltaessa tuotteita toisille käyttäjille.
Permanenta länken (URI): URN:ISBN:978-951-51-4139-2
http://hdl.handle.net/10138/233167
Datum: 2018-03-22
Subject:
Rights: Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden.


Filer under denna titel

Total number of downloads: Loading...

Filer Storlek Format Granska
explorin.pdf 2.005Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post