Can Leaf Water Content Be Estimated Using Multispectral Terrestrial Laser Scanning? A Case Study With Norway Spruce Seedlings

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/233845

Citation

Junttila , S , Sugano , J , Vastaranta , M , Linnakoski , R , Kaartinen , H , Kukko , A , Holopainen , M , Hyyppa , H & Hyyppa , J 2018 , ' Can Leaf Water Content Be Estimated Using Multispectral Terrestrial Laser Scanning? A Case Study With Norway Spruce Seedlings ' , Frontiers in plant science , vol. 9 , 299 . https://doi.org/10.3389/fpls.2018.00299

Titel: Can Leaf Water Content Be Estimated Using Multispectral Terrestrial Laser Scanning? A Case Study With Norway Spruce Seedlings
Författare: Junttila, Samuli; Sugano, Junko; Vastaranta, Mikko; Linnakoski, Riikka; Kaartinen, Harri; Kukko, Antero; Holopainen, Markus; Hyyppa, Hannu; Hyyppa, Juha
Upphovmannens organisation: Department of Forest Sciences
Laboratory of Forest Resources Management and Geo-information Science
Forest Health Group
Forest Ecology and Management
Datum: 2018-03-08
Språk: eng
Sidantal: 14
Tillhör serie: Frontiers in plant science
ISSN: 1664-462X
DOI: https://doi.org/10.3389/fpls.2018.00299
Permanenta länken (URI): http://hdl.handle.net/10138/233845
Abstrakt: Changing climate is increasing the amount and intensity of forest stress agents, such as drought, pest insects, and pathogens. Leaf water content, measured here in terms of equivalent water thickness (EWT), is an early indicator of tree stress that provides timely information about the health status of forests. Multispectral terrestrial laser scanning (MS-TLS) measures target geometry and reflectance simultaneously, providing spatially explicit reflectance information at several wavelengths. EWT and leaf internal structure affect leaf reflectance in the shortwave infrared region that can be used to predict EWT with MS-TLS. A second wavelength that is sensitive to leaf internal structure but not affected by EWT can be used to normalize leaf internal effects on the shortwave infrared region and improve the prediction of EWT. Here we investigated the relationship between EWT and laser intensity features using multisensor MS-TLS at 690, 905, and 1,550 nm wavelengths with both drought-treated and Endoconidiophora polonica inoculated Norway spruce seedlings to better understand how MS-TLS measurements can explain variation in EWT. In our study, a normalized ratio of two wavelengths at 905 and 1,550 nm and length of seedling explained 91% of the variation (R-2) in EWT as the respective prediction accuracy for EWT was 0.003 g/cm(2) in greenhouse conditions. The relation between EWT and the normalized ratio of 905 and 1,550 nm wavelengths did not seem sensitive to a decreased point density of the MS-TLS data. Based on our results, different EWTs in Norway spruce seedlings show different spectral responses when measured using MS-TLS. These results can be further used when developing EWT monitoring for improving forest health assessments.
Subject: terrestrial laser scanning
tree health
drought stress
multispectral laser scanning
leaf water content
forest damage
Endoconidiophora polonica
INDUCED TREE MORTALITY
FUEL MOISTURE-CONTENT
RED-ATTACK DAMAGE
LIDAR DATA
SURFACE-TEMPERATURE
FOREST HEALTH
PLANT STRESS
VEGETATION
REFLECTANCE
INTENSITY
4112 Forestry
Referentgranskad: Ja
Licens: cc_by
Användningsbegränsning: openAccess
Parallelpublicerad version: publishedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
fpls_09_00299.pdf 1.693Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post