Maalahopuun kartoitus maastolaserkeilauksella

Näytä kaikki kuvailutiedot

Permalink

http://urn.fi/URN:NBN:fi:hulib-201804171711
Julkaisun nimi: Maalahopuun kartoitus maastolaserkeilauksella
Tekijä: Yrttimaa, Tuomas
Muu tekijä: Helsingin yliopisto, Maatalous-metsätieteellinen tiedekunta, Metsätieteiden laitos
Opinnäytteen taso: pro gradu -tutkielmat
Tiivistelmä: Lahopuu ylläpitää metsäluonnon monimuotoisuutta, sillä se on välttämätön elinympäristö monille uhanalaisille eliölajeille. Tietoa lahopuun määrästä ja laadusta tarvitaan, jotta voidaan arvioida lahopuun vaikutusta metsäekosysteemin erilaisiin toimintoihin. Lahopuun kartoitus perustuu yhä maastoinventointiin, jossa perinteiset mittavälineet voitaisiin korvata maastolaserkeilauksella. Maastolaserkeilain tuottaa ympäristöstään tiheän pistepilven, jonka millimetritason tarkkuutta voidaan hyödyntää puu- ja koealatason mittauksissa. Maastolaserkeilaus on osoittautunut tehokkaaksi tiedonkeruumenetelmäksi elävän puuston koealamittaukseen, mutta sen soveltuvuutta lahopuun kartoitukseen ei ole vielä tutkittu. Tämän tutkielman tavoitteena oli kehittää maastolaserkeilaukseen perustuva automaattinen menetelmä maalahopuun määrän ja laadun kartoitukseen. Maalahopuun kartoitusta varten kerättiin maastolaserkeilausaineisto 20 metsikkökoealalta (32 m x 32 m). Maastossa koealoilta kartoitettiin vähintään 5 cm järeät maalahopuurungot kartoitusmenetelmän kehitystä ja tarkkuuden arviointia varten. Maalahopuurungot tunnistettiin koealojen pistepilvistä automaattisesti runkojen geometristen muotojen perusteella sylinterisovitusta ja pintamallien segmentointia käyttäen. Rungot tunnistettiin myös pistepilven visuaaliseen tulkintaan perustuvalla menetelmällä, jotta voitiin tarkastella, miten hyvin maalahopuut on mahdollista kartoittaa koealaa kuvaavan tiheän pistepilven avulla. Pistepilvistä tunnistetuille rungoille määritettiin dimensiot, joiden perusteella laskettiin runkojen tilavuus- ja järeystunnukset. Runkojen ominaisuus- ja sijaintitietojen avulla muodostettiin kartta maalahopuun jakautumisesta koealalle, estimaatit maalahopuun määrää ja laatua koealatasolla kuvaaville tunnuksille sekä edelleen maalahopuun järeysjakauma koko tutkimusalueelle. Tulokset osoittivat, että maastolaserkeilaus soveltuu tiedonkeruumenetelmäksi maalahopuun kartoitukseen metsikkökoealoilta. Metsikkökoealaa kuvaavasta pistepilvestä voitiin tunnistaa automaattisesti 68 % maalahopuun tilavuudesta, jolloin maalahopuun kokonaistilavuus määritettiin 15,0 m3/ha tarkkuudella (RMSE). Pistepilven visuaalisella tulkinnalla kartoitusta voitiin edelleen tarkentaa: maalahopuun tilavuudesta tunnistettiin 83 %, ja kokonaistilavuusestimaatti määritettiin lähes harhattomasti 6,4 m3/ha tarkkuudella. Keskimäärin maalahopuurungon pituus aliarvioitiin ja järeys yliarvioitiin, koska runkoa ei pystytty tunnistamaan pistepilvestä koko pituudeltaan. Tulosten perusteella maastolaserkeilaukseen perustuva maalahopuun kartoitus on sitä luotettavampaa, mitä järeämmästä lahopuusta ollaan kiinnostuneita. Puuston ja aluskasvillisuuden tiheys aiheuttaa kuitenkin pistepilveen katvealueita, joilta runkoja ei voida tunnistaa. Siksi maastolaserkeilaukseen perustuvassa maalahopuun kartoituksessa on kiinnitettävä huomiota pistepilven laatuun.Decaying dead wood is a key factor for forest biodiversity. In boreal forests, many threatened and specialised species are dependent on dead wood. Therefore, information on quantity and quality of dead wood is needed. Conventionally, the inventory of dead wood is based on measurements and observations done in the field with traditional forest measurement tools, which, however, could be replaced by terrestrial laser scanning (TLS). TLS provides a dense point cloud on its surroundings with a millimetre-level of detail enabling versatile measurements at the levels from an individual tree to an entire sample plot. Previous studies have proven TLS to efficiently provide information for mapping standing trees, but the feasibility of TLS for dead wood inventory has not yet examined. The objective of this study was to develop an automatic method for mapping downed dead wood using TLS. TLS data were collected from 20 sample plots (32 m x 32 m in size) using the multi-scan approach with five scanning positions on each plot. All downed dead tree trunks with a diameter exceeding 5 cm at the middle of the trunk were measured in the field and considered as the field reference. Cylinder fitting and surface model segmentation were utilised when the downed dead wood trunks were automatically detected from the point clouds. The trunks were also detected visually to reveal all the potential of the use of a dense point cloud in mapping downed dead wood from a sample plot. Dimensions, volume, geometry-related quality attributes and position in the sample plot were automatically determined for each trunk detected from the point cloud. Based on trunk attributes, a map representing the spatial distribution of downed dead wood, as well as estimates for attributes describing the quantity and quality of downed dead wood at the plot level, were constructed. Finally, a diameter distribution for downed dead wood in the study area was comprised. This study revealed that TLS is a valid method for mapping downed dead wood from sample plots. By utilising the TLS point clouds, 68 % of the downed dead wood volume was detected automatically, while the total volume of downed dead wood was estimated with an RMSE of 15,0 m3/ha. The mapping accuracy could be improved with the visual interpretation of the point cloud, in which case 83 % of the dead wood volume was detected, and the estimate for the total volume of downed dead wood was determined with an accuracy of 6,4 m3/ha. On average, the length of the detected tree trunk was underestimated while the diameter was overestimated since the trunk was not able to be detected entirely from the point cloud. According to the results, the reliability of TLS based dead wood mapping increases alongside the dimensions of the dead wood trunks. The density of plot vegetation, however, causes shading and reduces the trunk detection accuracy. Therefore, when collecting the data, extra attention must be paid to the quality of the point cloud.
URI: URN:NBN:fi:hulib-201804171711
http://hdl.handle.net/10138/234388
Päiväys: 2018
Avainsanat: TLS
monimuotoisuus
biodiversiteetti
pistepilvi
lahopuuinventointi
Oppiaine: Metsien ekologia ja käyttö
Forest Ecology and Management
skoglig ekologi och resurshushållning


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
yrttimaa_tuomas_pro_gradu.pdf 2.788MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot