Solving Optimization Problems via Maximum Satisfiability : Encodings and Re-Encodings

Show simple item record

dc.contributor Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta fi
dc.contributor Helsingfors universitet, matematisk-naturvetenskapliga fakulteten sv
dc.contributor University of Helsinki, Faculty of Science, Department of Computer Science en
dc.contributor Helsinki Institute for Information Technology HIIT en
dc.contributor.author Berg, Jeremias fi
dc.date.accessioned 2018-05-03T06:06:49Z
dc.date.available 2018-05-15 fi
dc.date.available 2018-05-03T06:06:49Z
dc.date.issued 2018-05-25 fi
dc.identifier.uri URN:ISBN:978-951-51-4242-9 fi
dc.identifier.uri http://hdl.handle.net/10138/234642
dc.description.abstract NP-hard combinatorial optimization problems are commonly encountered in numerous different domains. As such efficient methods for solving instances of such problems can save time, money, and other resources in several different applications. This thesis investigates exact declarative approaches to combinatorial optimization within the maximum satisfiability (MaxSAT) paradigm, using propositional logic as the constraint language of choice. Specifically we contribute to both MaxSAT solving and encoding techniques. In the first part of the thesis we contribute to MaxSAT solving technology by developing solver independent MaxSAT preprocessing techniques that re-encode MaxSAT instances into other instances. In order for preprocessing to be effective, the total time spent re-encoding the original instance and solving the new instance should be lower than the time required to directly solve the original instance. We show how the recently proposed label-based framework for MaxSAT preprocessing can be efficiently integrated with state-of-art MaxSAT solvers in a way that improves the empirical performance of those solvers. We also investigate the theoretical effect that label-based preprocessing has on the number of iterations needed by MaxSAT solvers in order to solve instances. We show that preprocessing does not improve best-case performance (in the number of iterations) of MaxSAT solvers, but can improve the worst-case performance. Going beyond previously proposed preprocessing rules we also propose and evaluate a MaxSAT-specific preprocessing technique called subsumed label elimination (SLE). We show that SLE is theoretically different from previously proposed MaxSAT preprocessing rules and that using SLE in conjunction with other preprocessing rules improves empirical performance of several MaxSAT solvers. In the second part of the thesis we propose and evaluate new MaxSAT encodings to two important data analysis tasks: correlation clustering and bounded treewidth Bayesian network learning. For both problems we empirically evaluate the resulting MaxSAT-based solution approach with other exact algorithms for the problems. We show that, on many benchmarks, the MaxSAT-based approach is faster and more memory efficient than other exact approaches. For correlation clustering, we also show that the quality of solutions obtained using MaxSAT is often significantly higher than the quality of solutions obtained by approximative (inexact) algorithms. We end the thesis with a discussion highlighting possible further research directions. en
dc.description.abstract Kombinatorinen optimointi on laajasti tutkittu matematiikan ja tietojenkäsittelytieteen osa-alue. Kombinatorisissa optimointiongelmissa diskreetin ratkaisujen joukon yli määritelty kustannusfunktio määrittää kunkin ratkaisun hyvyyden. Tehtävänä on löytää sallittujen ratkaisujen joukosta kustannusfunktion mukaan paras mahdollinen. Esimerkiksi niin sanotussa kauppamatkustajan ongelmassa annettuna joukko kaupunkeja tavoitteena on löytää lyhin mahdollinen reitti, jota kulkemalla voidaan käydä kaikissa kaupungeissa. Kauppamatkustajan ongelma sekä monet muut kombinatoriset optimointiongelmat ovat laskennallisesti haastavia, tarkemmin ilmaistuna NP-vaikeita. Haastavia kombinatorisia optimointiongelmia esiintyy monilla eri tieteen ja teollisuuden aloilla; esimerkiksi useat koneoppimiseen liittyvät ongelmat voidaan esittää kombinatorisina optimointiongelmina. Kombinatoristen optimointiongelmien moninaisuus motivoi tehokkaiden ratkaisualgoritmien kehitystä. Väitöskirjassa kehitetään deklaratiivisia ratkaisumenetelmiä NP-vaikeille optimointiongelmille. Deklaratiivinen ratkaisumenetelmä olettaa, että ratkaistavalle ongelmalle on olemassa jonkin matemaattisen rajoitekielen rajoitemalli, joka kuvaa kunkin ongelman instanssin joukkona matemaattisia rajoitteita siten, että kunkin rajoiteinstanssin optimaalinen ratkaisu voidaan tulkita alkuperäisen ongelman optimaalisena ratkaisuna. Deklaratiivisessa ratkaisumenetelmässä ratkaistavan optimointiongelman instanssi ratkaistaan kuvaamalla ensin instanssi rajoitemallilla joukoksi rajoitteita ja ratkaisemalla sitten rajoiteinstanssi rajoitekielen ratkaisualgoritmilla. Työssä käytetään lauselogiikkaa rajoitekielenä ja keskitytään lauselogiikan toteutuvuusongelman (SAT) laajennukseen optimointiongelmille. Tätä ongelmaa kutsutaan nimellä MaxSAT. Työssä kehitetään sekä sekä yleisiä MaxSAT-ratkaisumenetelmiä että MaxSAT-malleja tietyille koneoppimiseen liittyville optimointiongelmille. Väitöskirjan keskeiset kontribuutiot esitellään kahdessa osassa. Ensimmäisessä osassa kehitetään MaxSAT-ratkaisumenetelmiä, tarkemmin sanottuna MaxSAT-esikäsittelymenetelmiä. Esikäsittelymenetelmät ovat tehokkaasti laskettavissa olevia päättelysääntöjä (esikäsittelysääntöjä), joita käyttämällä annettuja MaxSAT-instansseja voidaan yksinkertaistaa. Esikäsittelyn tavoitteena on tehdä MaxSAT-instansseista helpommin ratkaistavia käytännössä. Väitöstyössä: i) esitellään tapa integroida keskeiset lauselogiikan toteutuvuusongelman esikäsittelysäännöt nykyaikaisiin MaxSAT-ratkaisualgoritmeihin ii) analysoidaan esikäsittelyn vaikutusta ratkaisualgoritmien käyttäytymiseen ja iii) esitellään uusi MaxSAT-esikäsittelysääntö. Kaikkia kontribuutioita MaxSAT-esikäsittelyyn analysoidaan sekä teoreettisella että kokeellisella tasolla. Kirjan toisessa osassa kehitetään MaxSAT-malleja kahdelle koneoppimiseen liittyvälle optimointiongelmalle: korrelaatioklusteroinnille ja Bayes-verkkojen rakenteenoppimisongelmalle. Kehitettäviä malleja analysoidaan sekä teoreettisesti, että kokeellisesti. Teoreettisella tasolla mallit todistetaan oikeellisiksi. Kokeellisella tasolla osoitetaan, että mallit mahdollistavat alkuperäisten ongelmien instanssien tehokkaan ratkaisemisen aiemmin näille ongelmille esiteltyihin eksakteihin ratkaisualgoritmeihin verrattuna. fi
dc.format.mimetype application/pdf fi
dc.language.iso en fi
dc.publisher Helsingin yliopisto fi
dc.publisher Helsingfors universitet sv
dc.publisher University of Helsinki en
dc.relation.isformatof URN:ISBN:978-951-51-4241-2 fi
dc.relation.isformatof Helsinki: Unigrafia, 2018, Series of Publications A. 1238-8645 fi
dc.rights Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. fi
dc.rights This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. en
dc.rights Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden. sv
dc.subject fi
dc.title Solving Optimization Problems via Maximum Satisfiability : Encodings and Re-Encodings en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.type.ontasot Doctoral dissertation (article-based) en
dc.type.ontasot Doktorsavhandling (sammanläggning) sv
dc.ths Järvisalo, Matti fi
dc.ths Myllymäki, Petri fi
dc.opn Lynce, Inês fi
dc.type.dcmitype Text fi

Files in this item

Total number of downloads: Loading...

Files Size Format View
SolvingO.pdf 787.5Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record