A mixture autoregressive model based on Student's t-distribution

Näytä kaikki kuvailutiedot


Julkaisun nimi: A mixture autoregressive model based on Student's t-distribution
Tekijä: Meitz, Mika; Preve, Daniel; Saikkonen, Pentti
Kuuluu julkaisusarjaan: HECER, Discussion Papers, No. 429
ISSN: 1795-0562
Tiivistelmä: A new mixture autoregressive model based on Student's t-distribution is proposed. A key feature of our model is that the conditional t-distributions of the component models are based on autoregressions that have multivariate t-distributions as their (low-dimensional) stationary distributions. That autoregressions with such stationary distributions exist is not immediate. Our formulation implies that the conditional mean of each component model is a linear function of past observations and the conditional variance is also time varying. Compared to previous mixture autoregressive models our model may therefore be useful in applications where the data exhibits rather strong conditional heteroskedasticity. Our formulation also has the theoretical advantage that conditions for stationarity and ergodicity are always met and these properties are much more straightforward to establish than is common in nonlinear autoregressive models. An empirical example employing a realized kernel series based on S&P 500 high-frequency data shows that the proposed model performs well in volatility forecasting. JEL Classification: C22
URI: http://hdl.handle.net/10138/234839
Päiväys: 2018-05
Avainsanat: conditional heteroscedasticity
mixture model
regime switching
Student's t-distribution


Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
HECER-DP429.pdf 519.8KB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot