Synthetic biology approach for plant protection using dsRNA

Show full item record



Niehl , A , Soininen , M , Poranen , M M & Heinlein , M 2018 , ' Synthetic biology approach for plant protection using dsRNA ' , Plant biotechnology journal , vol. 16 , no. 9 , pp. 1679–1687 .

Title: Synthetic biology approach for plant protection using dsRNA
Author: Niehl, Annette; Soininen, Marjukka; Poranen, Minna Marjetta; Heinlein, Manfred
Contributor organization: Molecular and Integrative Biosciences Research Programme
Molecular and Translational Virology
General Microbiology
Faculty of Biological and Environmental Sciences
Date: 2018-09
Language: eng
Number of pages: 9
Belongs to series: Plant biotechnology journal
ISSN: 1467-7644
Abstract: Pathogens induce severe damages on cultivated plants and represent a serious threat to global food security. Emerging strategies for crop protection involve the external treatment of plants with double-stranded (ds)RNA to trigger RNA interference. However, applying this technology in greenhouses and fields depends on dsRNA quality, stability and efficient large-scale production. Using components of the bacteriophage phi6, we engineered a stable and accurate invivo dsRNA production system in Pseudomonas syringae bacteria. Unlike other invitro or invivo dsRNA production systems that rely on DNA transcription and postsynthetic alignment of single-stranded RNA molecules, the phi6 system is based on the replication of dsRNA by an RNA-dependent RNA polymerase, thus allowing production of high-quality, long dsRNA molecules. The phi6 replication complex was reprogrammed to multiply dsRNA sequences homologous to tobacco mosaic virus (TMV) by replacing the coding regions within two of the three phi6 genome segments with TMV sequences and introduction of these constructs into P.syringae together with the third phi6 segment, which encodes the components of the phi6 replication complex. The stable production of TMV dsRNA was achieved by combining all the three phi6 genome segments and by maintaining the natural dsRNA sizes and sequence elements required for efficient replication and packaging of the segments. The produced TMV-derived dsRNAs inhibited TMV propagation when applied to infected Nicotiana benthamiana plants. The established dsRNA production system enables the broad application of dsRNA molecules as an efficient, highly flexible, nontransgenic and environmentally friendly approach for protecting crops against viruses and other pathogens.
Subject: 1182 Biochemistry, cell and molecular biology
dsRNA production technology
sustainable crop protection
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
pbi.12904.pdf 1.419Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record