Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

Show simple item record

dc.contributor.author Mantzouki, Evanthia
dc.contributor.author Lurling, Miquel
dc.contributor.author Fastner, Jutta
dc.contributor.author Domis, Lisette de Senerpont
dc.contributor.author Wilk-Wozniak, Elzbieta
dc.contributor.author Koreiviene, Judita
dc.contributor.author Seelen, Laura
dc.contributor.author Teurlincx, Sven
dc.contributor.author Verstijnen, Yvon
dc.contributor.author Krzton, Wojciech
dc.contributor.author Walusiak, Edward
dc.contributor.author Karosiene, Jurate
dc.contributor.author Kasperoviciene, Jurate
dc.contributor.author Savadova, Ksenija
dc.contributor.author Vitonyte, Irma
dc.contributor.author Cillero-Castro, Carmen
dc.contributor.author Budzynska, Agnieszka
dc.contributor.author Goldyn, Ryszard
dc.contributor.author Kozak, Anna
dc.contributor.author Rosinska, Joanna
dc.contributor.author Szelag-Wasielewska, Elzbieta
dc.contributor.author Domek, Piotr
dc.contributor.author Jakubowska-Krepska, Natalia
dc.contributor.author Kwasizur, Kinga
dc.contributor.author Messyasz, Beata
dc.contributor.author Pelechata, Aleksandra
dc.contributor.author Pelechaty, Mariusz
dc.contributor.author Kokocinski, Mikolaj
dc.contributor.author Garcia-Murcia, Ana
dc.contributor.author Real, Monserrat
dc.contributor.author Romans, Elvira
dc.contributor.author Noguero-Ribes, Jordi
dc.contributor.author Parreno Duque, David
dc.contributor.author Fernandez-Moran, Elisabeth
dc.contributor.author Karakaya, Nusret
dc.contributor.author Haggqvist, Kerstin
dc.contributor.author Demir, Nilsun
dc.contributor.author Beklioglu, Meryem
dc.contributor.author Filiz, Nur
dc.contributor.author Levi, Eti E.
dc.contributor.author Iskin, Ugur
dc.contributor.author Bezirci, Gizem
dc.contributor.author Tavsanoglu, Ulku Nihan
dc.contributor.author Ozhan, Koray
dc.contributor.author Gkelis, Spyros
dc.contributor.author Panou, Manthos
dc.contributor.author Fakioglu, Ozden
dc.contributor.author Yang, Yang
dc.contributor.author Salmi, Pauliina
dc.contributor.author Arvola, Lauri
dc.date.accessioned 2018-08-22T09:40:02Z
dc.date.available 2018-08-22T09:40:02Z
dc.date.issued 2018-04
dc.identifier.citation Mantzouki , E , Lurling , M , Fastner , J , Domis , L D S , Wilk-Wozniak , E , Koreiviene , J , Seelen , L , Teurlincx , S , Verstijnen , Y , Krzton , W , Walusiak , E , Karosiene , J , Kasperoviciene , J , Savadova , K , Vitonyte , I , Cillero-Castro , C , Budzynska , A , Goldyn , R , Kozak , A , Rosinska , J , Szelag-Wasielewska , E , Domek , P , Jakubowska-Krepska , N , Kwasizur , K , Messyasz , B , Pelechata , A , Pelechaty , M , Kokocinski , M , Garcia-Murcia , A , Real , M , Romans , E , Noguero-Ribes , J , Parreno Duque , D , Fernandez-Moran , E , Karakaya , N , Haggqvist , K , Demir , N , Beklioglu , M , Filiz , N , Levi , E E , Iskin , U , Bezirci , G , Tavsanoglu , U N , Ozhan , K , Gkelis , S , Panou , M , Fakioglu , O , Yang , Y , Salmi , P & Arvola , L 2018 , ' Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins ' , Toxins , vol. 10 , no. 4 , 156 . https://doi.org/10.3390/toxins10040156
dc.identifier.other PURE: 115211283
dc.identifier.other PURE UUID: c362c9c7-b904-4e4f-bb44-59a0cb4a4352
dc.identifier.other WOS: 000435183700027
dc.identifier.other Scopus: 85045652812
dc.identifier.uri http://hdl.handle.net/10138/238986
dc.description.abstract Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains. en
dc.format.extent 24
dc.language.iso eng
dc.relation.ispartof Toxins
dc.rights cc_by
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject microcystin
dc.subject anatoxin
dc.subject cylindrospermopsin
dc.subject temperature
dc.subject direct effects
dc.subject indirect effects
dc.subject spatial distribution
dc.subject European Multi Lake Survey
dc.subject DAPHNIA-MAGNA
dc.subject FRESH-WATER
dc.subject BLOOMS
dc.subject LAKES
dc.subject CLIMATE
dc.subject GROWTH
dc.subject 1172 Environmental sciences
dc.title Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins en
dc.type Article
dc.contributor.organization Lammi Biological Station
dc.contributor.organization Doctoral Programme in Atmospheric Sciences
dc.description.reviewstatus Peer reviewed
dc.relation.doi https://doi.org/10.3390/toxins10040156
dc.relation.issn 2072-6651
dc.rights.accesslevel openAccess
dc.type.version publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
toxins_10_00156_v4.pdf 15.97Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record