Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning

Show full item record



Permalink

http://hdl.handle.net/10138/239080

Citation

Jucker , T , Asner , G P , Dalponte , M , Brodrick , P G , Philipson , C D , Vaughn , N R , Teh , Y A , Brelsford , C , Burslem , D F R P , Deere , N J , Ewers , R M , Kvasnica , J , Lewis , S L , Malhi , Y , Milne , S , Nilus , R , Pfeifer , M , Phillips , O L , Qie , L , Renneboog , N , Reynolds , G , Riutta , T , Struebig , M J , Svatek , M , Turner , E C & Coomes , D A 2018 , ' Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning ' , Biogeosciences , vol. 15 , no. 12 , pp. 3811-3830 . https://doi.org/10.5194/bg-15-3811-2018

Title: Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning
Author: Jucker, Tommaso; Asner, Gregory P.; Dalponte, Michele; Brodrick, Philip G.; Philipson, Christopher D.; Vaughn, Nicholas R.; Teh, Yit Arn; Brelsford, Craig; Burslem, David F. R. P.; Deere, Nicolas J.; Ewers, Robert M.; Kvasnica, Jakub; Lewis, Simon L.; Malhi, Yadvinder; Milne, Sol; Nilus, Reuben; Pfeifer, Marion; Phillips, Oliver L.; Qie, Lan; Renneboog, Nathan; Reynolds, Glen; Riutta, Terhi; Struebig, Matthew J.; Svatek, Martin; Turner, Edgar C.; Coomes, David A.
Contributor: University of Helsinki, Organismal and Evolutionary Biology Research Programme
University of Helsinki, Imperial College London
Date: 2018-06-22
Language: eng
Number of pages: 20
Belongs to series: Biogeosciences
ISSN: 1726-4170
URI: http://hdl.handle.net/10138/239080
Abstract: Borneo contains some of the world's most biodiverse and carbon-dense tropical forest, but this 750 000 km(2) island has lost 62% of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo hinge on recognizing the ecosystem services they provide, including their ability to store and sequester carbon. Airborne laser scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail across vast geographic areas. In recent years ALS has been integrated into statewide assessments of forest carbon in Neotropical and African regions, but not yet in Asia. For this to happen new regional models need to be developed for estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and composition-ally distinct from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning the lowland rainforests of Sabah on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbon stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions and clearly outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. Our model provides a simple, generalized and effective approach for mapping forest carbon stocks in Borneo and underpins ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests.
Subject: LIDAR-ASSISTED ESTIMATION
SMALL-FOOTPRINT LIDAR
RAIN-FOREST
NEOTROPICAL FOREST
ALLOMETRIC MODELS
PLOT SIZE
BIOMASS
EMISSIONS
STOCKS
TREES
1172 Environmental sciences
1181 Ecology, evolutionary biology
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
bg_15_3811_2018.pdf 3.456Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record