Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

Show full item record



Permalink

http://hdl.handle.net/10138/24417

Citation

Äystö , J , Bondila , M M , Novitzky , N , Oinonen , M , Rak , J , Räsänen , S , Trzaska , W & The ALICE Collaboration 2010 , ' Alignment of the ALICE Inner Tracking System with cosmic-ray tracks ' , Journal of Instrumentation , vol. 5 , no. 3 , pp. P03003 . https://doi.org/10.1088/1748-0221/5/03/P03003

Title: Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
Author: Äystö, Juha; Bondila, Mariana Mihaela; Novitzky, Norbert; Oinonen, Markku; Rak, Jan; Räsänen, Sami; Trzaska, Wladyslaw; The ALICE collaboration
Contributor: University of Helsinki, Helsinki Institute of Physics
University of Helsinki, Helsinki Institute of Physics
University of Helsinki, Helsinki Institute of Physics
University of Helsinki, Helsinki Institute of Physics
University of Helsinki, Helsinki Institute of Physics
University of Helsinki, Helsinki Institute of Physics
University of Helsinki, Helsinki Institute of Physics
Date: 2010-03
Language: eng
Number of pages: 37
Belongs to series: Journal of Instrumentation
ISSN: 1748-0221
URI: http://hdl.handle.net/10138/24417
Abstract: ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.
Subject: 114 Physical sciences
physics.ins-det
hep-ex
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
1001.0502v3 1.733Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record