Modelling of Arctic stratospheric ozone and water vapour and their changes

Näytä kaikki kuvailutiedot

Permalink

http://urn.fi/URN:ISBN:978-952-336-058-7
Julkaisun nimi: Modelling of Arctic stratospheric ozone and water vapour and their changes
Tekijä: Thölix, Laura
Muu tekijä: Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta
Ilmakehätieteiden tohtoriohjelma
Opinnäytteen taso: Väitöskirja (artikkeli)
Tiivistelmä: Ozone and water vapour are important trace gases in the atmosphere, where both play an important role in radiative and chemical processes. Ozone protects the Earth's biosphere, humans and materials from the harmful ultraviolet (UV) radiation. The distributions and changes of ozone and water vapour are thus important to understand. Restrictions on the production and use of ozone depleting substances (ODS) within the Montreal Protocol have stopped the growth of the ozone loss, even signs of recovery of the ozone layer have been seen. However, many ODSs are long lived in the atmosphere and it will take decades before they are removed. Stratospheric water vapour influences the polar ozone loss by controlling the formation of polar stratospheric clouds (PSC). The climate change will cool the stratosphere, which could favour the formation of PSCs. This could cause significant ozone depletion despite the lower chlorine loadings in the future stratosphere. Atmospheric models are needed for studying these phenomena, because the number of observations is limited. Also the prediction of future ozone loss requires models. In this study simulations of the middle atmosphere have been made using the FinROSE chemistry transport model (FinROSE-CTM). It is an off-line 3-dimensional model, covering the altitude range of ca. 10–80 km, including the stratosphere. The model can be used for short term case studies, as well as for decadal simulations. The FinROSE-CTM needs pre-calculated winds, temperature and surface pressure, and then calculates the chemistry and transport using the meteorology. In this study ECMWF reanalysis data and climate model data have been used. Model results have been compared to ground based and satellite observations, and the model has been shown to be suitable for polar stratospheric ozone and water vapour studies. When running the model with climate model data also future conditions can be predicted. Both observations and simulations show an increase in the water vapour concentration in the Arctic stratosphere after 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. In a recent study, we studied the effect of changes in the water vapour concentration in the tropical tropopause on Arctic ozone depletion. A change in the tropical tropopause water vapour concentration resulted in a corresponding change in the Arctic stratosphere. We found that the impact of water vapour changes on ozone loss in the Arctic polar vortex depends on the meteorological conditions. The strongest effect was in intermediately cold conditions, when added water vapour resulted in more ozone loss due to the additional PSCs and associated chlorine activation on their surface. The effect was less pronounced in cold winters because cold conditions persisted long enough for a nearly complete chlorine activation even with observed water vapour. The results show that the simulated water vapour concentration in the tropical tropopause has a significant impact on the Arctic ozone loss and deserves attention, and therefore needs to be well simulated in order to improve future projections of ozone layer recovery.Otsoni ja vesihöyry ovat tärkeitä hivenkaasuja ilmakehässä. Vesihöyry on yksi merkittävimmistä kasvihuonekaasuista, sillä se vaikuttaa maapallon säteilytasapainoon sekä moniin kemiallisiin reaktioihin ilmakehässä. Otsoni sen sijaan suojaa ihmisiä ja luontoa liialliselta auringon ultraviolettisäteilyltä. Siksi on tärkeä ymmärtää sekä vesihöyryn että otsonin jakaumat pitoisuuksien muutokset sekä nykyisessä että tulevaisuuden ilmastossa. Vaikka Montrealin protokollan asettamat rajoitukset otsonia tuhoavien CFC-kaasujen valmistukselle ja käytölle ovat saaneet otsonikerroksen tuhoutumisen pysähtymään, kestää otsonikerroksen ennalleen palautumisessa vielä pitkään. Ilmastonmuutos jäähdyttää stratosfääriä, jolloin polaaristratosfääripilvet (PSC) voivat lisääntyä. Tällöin otsonia voi tulevaisuudessa tuhoutua enemmän, vaikka kloorin määrä ilmakehässä olisikin pienempi. Näiden asioiden tutkimiseen tarvitaan ilmakehämalleja, sillä havaintoja stratosfääristä on rajoitetusti, eikä niitä myöskään ole olemassa tulevaisuuden ilmastosta. Tässä tutkimuksessa on stratosfäärin olosuhteiden tutkimiseen käytetty FinROSE kemiakuljetusmallia. Malli on globaali ja se kattaa stratosfäärin. Mallilla voidaan tehdä sekä lyhyitä tapaustutkimuksia että pitkiä, vuosikymmeniä kattavia simulaatioita. Malli tarvitsee syötteeksi meteorologista dataa: tuulen, lämpötilan ja pintapaineen. Tässä tutkimuksessa mallia on ajettu käyttäen ECMWF:n analyysejä tai ilmastomallilla etukäteen laskettua meteorologiaa. Lähtötiedon vaikutusta mallin antamiin tuloksiin tutkittiin, ja sillä havaittiin olevan suuri merkitys tulosten luotettavuuteen. FinROSE:lla laskettuja otsoni- ja vesihöyrypitoisuuksia verrattiin sekä satelliitti- että maanpintahavaintoihin, ja mallin todettiin tuottavan käyttökelpoisia tutkimustuloksia. Käyttämällä ilmastomallin meteorologiaa on ollut mahdollista tehdä FinROSE:lla ennusteita myös tulevaisuuden otsonikadoista. Tutkimuksen tuloksena selvisi, että vesihöyry on lisääntynyt stratosfäärissä vuosina 2006-2012, mutta 2012 jälkeen pitoisuus on vähentynyt. Mallisimulaatiot osoittavat, että vesipitoisuuden lisääntyminen johtuu pääosin kuljetuksesta; enemmän vettä on kulkeutunut tropiikista navoille. Arktisten polaarialueiden kosteassa ilmassa voi ilmastonmuutoksen vuoksi kylmenevässä stratosfäärissä muodostua entistä enemmän polaaristratosfääripilviä (PSC), joiden pinnalla klooriyhdisteet tuhoavat otsonia katalyyttisesti. Viimeisin tutkimus osoitti, että vesihöyry vaikuttaa otsonikatoon arktisella alueella eri tavoin erilaisissa meteorologisissa olosuhteissa. Suurin vaikutus oli kohtalaisen kylminä talvina, jolloin vesihöyrypitoisuuden kasvattaminen lisäsi selvästi otsonikatoa. Tämä johtui polaaripilvien määrän kasvusta ja lisääntyneestä klooriaktivaatiosta. Kylminä talvina vaikutus jäi vähäisemmäksi, sillä klooriaktivaatio oli silloin lähes täydellinen todellisiin havaintoihinkin perustuvalla vesihöyrymäärällä. Tulokset osoittavat, että tropiikin tropopaussin vesihöyryn määrällä on vaikutusta arktiseen otsonikatoon, ja että se on mallinnettava ilmastomalleissa oikein, jotta otsonikato voidaan ennustaa oikein.
URI: URN:ISBN:978-952-336-058-7
http://hdl.handle.net/10138/248739
Päiväys: 2018-11-06
Avainsanat:
Tekijänoikeustiedot: Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.


Tiedostot

Tiedosto(t) Koko Formaatti Näytä

Tähän julkaisuun ei ole liitetty tiedostoja

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot