Boundedness of non-homogeneous square functions and Lq type testing conditions with $q \in (1,2)$

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/249340

Lähdeviite

Martikainen , H & Mourgoglou , M 2015 , ' Boundedness of non-homogeneous square functions and Lq type testing conditions with $q \in (1,2)$ ' , Mathematical Research Letters , vol. 22 , no. 5 , pp. 1417-1457 . https://doi.org/10.4310/MRL.2015.v22.n5.a8

Julkaisun nimi: Boundedness of non-homogeneous square functions and Lq type testing conditions with $q \in (1,2)$
Tekijä: Martikainen, Henri; Mourgoglou, Mihalis
Tekijän organisaatio: Department of Mathematics and Statistics
Päiväys: 2015
Kieli: eng
Sivumäärä: 41
Kuuluu julkaisusarjaan: Mathematical Research Letters
ISSN: 1073-2780
DOI-tunniste: https://doi.org/10.4310/MRL.2015.v22.n5.a8
URI: http://hdl.handle.net/10138/249340
Tiivistelmä: We continue the study of local Tb theorems for square functions defined in the upper half-space (R-+(n+1), mu x dt/t). Here mu is allowed to be a non-homogeneous measure in R-n. In this paper we prove a boundedness result assuming local L-q type testing conditions in the difficult range q is an element of (1, 2). Our theorem is a non-homogeneous version of a result of S. Hofmann valid for the Lebesgue measure. It is also an extension of the recent results of M. Lacey and the first named author where non-homogeneous local L-2 testing conditions have been considered.We continue the study of local Tb theorems for square functions defined in the upper half-space (R-+(n+1), mu x dt/t). Here mu is allowed to be a non-homogeneous measure in R-n. In this paper we prove a boundedness result assuming local L-q type testing conditions in the difficult range q is an element of (1, 2). Our theorem is a non-homogeneous version of a result of S. Hofmann valid for the Lebesgue measure. It is also an extension of the recent results of M. Lacey and the first named author where non-homogeneous local L-2 testing conditions have been considered.We continue the study of local Tb theorems for square functions defined in the upper half-space (R-+(n+1), mu x dt/t). Here mu is allowed to be a non-homogeneous measure in R-n. In this paper we prove a boundedness result assuming local L-q type testing conditions in the difficult range q is an element of (1, 2). Our theorem is a non-homogeneous version of a result of S. Hofmann valid for the Lebesgue measure. It is also an extension of the recent results of M. Lacey and the first named author where non-homogeneous local L-2 testing conditions have been considered.
Avainsanat: 111 Mathematics
Vertaisarvioitu: Kyllä
Tekijänoikeustiedot: cc_by_nc
Pääsyrajoitteet: closedAccess
Rinnakkaistallennettu versio: submittedVersion
Rahoittaja: Academy of Finland
Rahoitusnumero: 266262


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
SF3_MarMou_Submitted.pdf 788.2KB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot