Boundedness of non-homogeneous square functions and Lq type testing conditions with $q \in (1,2)$

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/249340

Citation

Martikainen , H & Mourgoglou , M 2015 , ' Boundedness of non-homogeneous square functions and Lq type testing conditions with $q \in (1,2)$ ' , Mathematical Research Letters , vol. 22 , no. 5 , pp. 1417-1457 . https://doi.org/10.4310/MRL.2015.v22.n5.a8

Titel: Boundedness of non-homogeneous square functions and Lq type testing conditions with $q \in (1,2)$
Författare: Martikainen, Henri; Mourgoglou, Mihalis
Upphovmannens organisation: Department of Mathematics and Statistics
Datum: 2015
Språk: eng
Sidantal: 41
Tillhör serie: Mathematical Research Letters
ISSN: 1073-2780
DOI: https://doi.org/10.4310/MRL.2015.v22.n5.a8
Permanenta länken (URI): http://hdl.handle.net/10138/249340
Abstrakt: We continue the study of local Tb theorems for square functions defined in the upper half-space (R-+(n+1), mu x dt/t). Here mu is allowed to be a non-homogeneous measure in R-n. In this paper we prove a boundedness result assuming local L-q type testing conditions in the difficult range q is an element of (1, 2). Our theorem is a non-homogeneous version of a result of S. Hofmann valid for the Lebesgue measure. It is also an extension of the recent results of M. Lacey and the first named author where non-homogeneous local L-2 testing conditions have been considered.We continue the study of local Tb theorems for square functions defined in the upper half-space (R-+(n+1), mu x dt/t). Here mu is allowed to be a non-homogeneous measure in R-n. In this paper we prove a boundedness result assuming local L-q type testing conditions in the difficult range q is an element of (1, 2). Our theorem is a non-homogeneous version of a result of S. Hofmann valid for the Lebesgue measure. It is also an extension of the recent results of M. Lacey and the first named author where non-homogeneous local L-2 testing conditions have been considered.We continue the study of local Tb theorems for square functions defined in the upper half-space (R-+(n+1), mu x dt/t). Here mu is allowed to be a non-homogeneous measure in R-n. In this paper we prove a boundedness result assuming local L-q type testing conditions in the difficult range q is an element of (1, 2). Our theorem is a non-homogeneous version of a result of S. Hofmann valid for the Lebesgue measure. It is also an extension of the recent results of M. Lacey and the first named author where non-homogeneous local L-2 testing conditions have been considered.
Subject: 111 Mathematics
Referentgranskad: Ja
Licens: cc_by_nc
Användningsbegränsning: closedAccess
Parallelpublicerad version: submittedVersion
Finansierad av: Academy of Finland
Finansierings ID: 266262


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
SF3_MarMou_Submitted.pdf 788.2Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post