Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range

Show full item record



Permalink

http://hdl.handle.net/10138/275490

Citation

Stolzenburg , D , Fischer , L , Vogel , A L , Heinritzi , M , Schervish , M , Simon , M , Wagner , A C , Dada , L , Ahonen , L R , Amorim , A , Baccarini , A , Bauer , P S , Baumgartner , B , Bergen , A , Bianchi , F , Breitenlechner , M , Brilke , S , Mazon , S B , Chen , D , Dias , A , Draper , D C , Duplissy , J , El Haddad , I , Finkenzeller , H , Frege , C , Fuchs , C , Garmash , O , Gordon , H , He , X , Helm , J , Hofbauer , V , Hoyle , C R , Kim , C , Kirkby , J , Kontkanen , J , Kuerten , A , Lampilahti , J , Lawler , M , Lehtipalo , K , Leiminger , M , Mai , H , Mathot , S , Mentler , B , Molteni , U , Nie , W , Nieminen , T , Nowak , J B , Ojdanic , A , Onnela , A , Passananti , M , Petäjä , T , Quélever , L L J , Rissanen , M P , Sarnela , N , Schallhart , S , Tauber , C , Tome , A , Wagner , R , Wang , M , Weitz , L , Wimmer , D , Xiao , M , Yan , C , Ye , P , Zha , Q , Baltensperger , U , Curtius , J , Dommen , J , Flagan , R C , Kulmala , M , Smith , J N , Worsnop , D R , Hansel , A , Donahue , N M & Winkler , P M 2018 , ' Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range ' , Proceedings of the National Academy of Sciences of the United States of America , vol. 115 , no. 37 , pp. 9122-9127 . https://doi.org/10.1073/pnas.1807604115

Title: Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
Author: Stolzenburg, Dominik; Fischer, Lukas; Vogel, Alexander L.; Heinritzi, Martin; Schervish, Meredith; Simon, Mario; Wagner, Andrea C.; Dada, Lubna; Ahonen, Lauri R.; Amorim, Antonio; Baccarini, Andrea; Bauer, Paulus S.; Baumgartner, Bernhard; Bergen, Anton; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Mazon, Stephany Buenrostro; Chen, Dexian; Dias, Antnio; Draper, Danielle C.; Duplissy, Jonathan; El Haddad, Imad; Finkenzeller, Henning; Frege, Carla; Fuchs, Claudia; Garmash, Olga; Gordon, Hamish; He, Xucheng; Helm, Johanna; Hofbauer, Victoria; Hoyle, Christopher R.; Kim, Changhyuk; Kirkby, Jasper; Kontkanen, Jenni; Kuerten, Andreas; Lampilahti, Janne; Lawler, Michael; Lehtipalo, Katrianne; Leiminger, Markus; Mai, Huajun; Mathot, Serge; Mentler, Bernhard; Molteni, Ugo; Nie, Wei; Nieminen, Tuomo; Nowak, John B.; Ojdanic, Andrea; Onnela, Antti; Passananti, Monica; Petäjä, Tuukka; Quélever, Lauriane L. J.; Rissanen, Matti P.; Sarnela, Nina; Schallhart, Simon; Tauber, Christian; Tome, Antonio; Wagner, Robert; Wang, Mingyi; Weitz, Lena; Wimmer, Daniela; Xiao, Mao; Yan, Chao; Ye, Penglin; Zha, Qiaozhi; Baltensperger, Urs; Curtius, Joachim; Dommen, Josef; Flagan, Richard C.; Kulmala, Markku; Smith, James N.; Worsnop, Douglas R.; Hansel, Armin; Donahue, Neil M.; Winkler, Paul M.
Contributor: University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Department of Physics
University of Helsinki, Aerosol-Cloud-Climate -Interactions (ACCI)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
Date: 2018-09-11
Language: eng
Number of pages: 6
Belongs to series: Proceedings of the National Academy of Sciences of the United States of America
ISSN: 0027-8424
URI: http://hdl.handle.net/10138/275490
Abstract: Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from -25 degrees C to 25 degrees C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.
Subject: aerosols
nanoparticle growth
aerosol formation
CLOUD experiment
volatile organic compounds
PARTICLE FORMATION
NUCLEATION
CONDENSATION
CHEMISTRY
PRODUCTS
CHAMBER
GASES
IONS
ACID
114 Physical sciences
1172 Environmental sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
9122.full_1.pdf 7.184Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record