Tonically Active Kainate Receptors (tKARs) : A Novel Mechanism Regulating Neuronal Function in the Brain

Show full item record

Permalink

http://urn.fi/URN:ISBN:978-952-10-7212-3
Title: Tonically Active Kainate Receptors (tKARs) : A Novel Mechanism Regulating Neuronal Function in the Brain
Author: Segerstråle, Mikael
Contributor: University of Helsinki, Faculty of Biological and Environmental Sciences, Department of Biosciences, fysiologia ja neurotiede
Laboratoire Physiologie Cellulaire de la Synapse, UMR CNRS 5091, Institut Francois Magendie, Universite Bordeaux 2, France
Thesis level: Doctoral dissertation (article-based)
Abstract: Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.Tässä väitöskirjatyössä on löydetty kokonaan uusi, toonisesti aktiivinen kainaattireseptorityyppi (tKAR), sekä tutkittu sen fysiologista merkitystä hippokampuksen hermosoluissa varhaisen postnataalisen kehityksen aikana. Hippokampuksen CA3 alueen glutamaattivälitteisissä synapseissa nämä GluK1-alayksikön sisältävät kainaattireseptorit reseptorit jarruttavat glutamaatin vapautumista pyramidisoluihin, ja lisäävät sen vapautumista inhibitorisiin interneuroneihin. tKAR:it tarjoavatkin uudenlaisen presynaptisen säätelymekanismin nopean glutamaattisingnaloinnin säätelyyn aivoissa. Lisäksi CA3 alueen interneuroneissa on myös postsynaptisia tKAR:eja, joiden aktivaatio pienentää hyperpolaroivaa K+ -virtaa. Tämä mahdollistaa spontaanit, korkeataajuiset aktiopotentiaaliryöpyt kehittyvissä interneuroneissa, millä puolestaan on keskeinen merkitys hippokampuksen pyramidisolujen ärtyvyydelle. Sekä pre- että postsynaptisille tKAR:eille on yhteistä paitsi jatkuva aktivaatio, niin myös G-proteiiniaktivaatioon liittyvä signalointi, joka niin ikään on uusi piirre kainaattireseptoreille. tKAR-välitteiset säätelymekanismit häviävät toisen postnataaliviikon aikana, samalla kun hippokampuksen toiminnassa tapahtuu huomattavia muutoksia liittyen esim. moniin kognitiivisiin toimintoihin liittyvien synkronisten hermoverkko-oskillaatioiden ilmenemiseen. Onkin ilmeistä, että nyt löydetyt mekanismit ovat tärkeitä tekijöitä hippokampuksen kehityksen säätelyssä.
URI: URN:ISBN:978-952-10-7212-3
http://hdl.handle.net/10138/27830
Date: 2011-10-28
Subject: fysiologia ja neurotiede
Rights: This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.


Files in this item

Total number of downloads: Loading...

Files Size Format View
tonicall.pdf 2.052Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record