Development of atmospheric pressure ionization ion mobility spectrometry and ion mobility spectrometry mass spectrometry

Show full item record



Permalink

http://urn.fi/URN:ISBN:978-952-10-7563-6
Title: Development of atmospheric pressure ionization ion mobility spectrometry and ion mobility spectrometry mass spectrometry
Author: Alexey, Adamov
Contributor: University of Helsinki, Faculty of Science, Department of Chemistry, Laboratory of Analytical Chemistry
Publisher: Helsingin yliopisto
Date: 2012-01-13
URI: http://urn.fi/URN:ISBN:978-952-10-7563-6
http://hdl.handle.net/10138/28525
Thesis level: Doctoral dissertation (article-based)
Abstract: This study is focused on the development and evaluation of ion mobility instrumentation with various atmospheric pressure ionization techniques and includes the following work. First, a high-resolution drift tube ion mobility spectrometer (IMS), coupled with a commercial triple quadrupole mass spectrometer (MS), was developed. This drift tube IMS is compatible with the front-end of commercial Sciex mass spectrometers (e.g., Sciex API-300, 365, and 3000) and also allows easy (only minor modifications are needed) installation between the original atmospheric pressure ion source and the triple quadrupole mass spectrometer. Performance haracteristics (e.g.,resolving power, detection limit, transmission efficiency of ions) of this IMS-MS instrument were evaluated. Development of the IMS-MS instrument also led to a study where a proposal was made that tetraalkylammonium ions can be used as chemical standards for ESI-IMS. Second, the same drift tube design was also used to build a standalone ion mobility spectrometer equipped with a Faraday plate detector. For this highresolution (resolving power about 100 shown) IMS device, a multi-ion source platform was built, which allows the use of a range of atmospheric pressure ionization methods, such as: corona discharge chemical ionization (CD-APCI), atmospheric pressure photoionization (APPI), and radioactive atmospheric pressure chemical ionization (R-APCI). The multi-ion source platform provides easy switching between ionization methods and both positive and negative ionization modes can be used. Third, a simple desorpion/ionization on silicon (DIOS) ion source set-up for use with the developed IMS and IMS-MS instruments was built and its operation demonstrated. Fourth, a prototype of a commercial aspiration-type ion mobility spectrometer was mounted in front of a commercial triple quadrupole mass spectrometer. The set-up, which is simple, easy to install, and requires no major modifications to the MS, provides the possibility of gathering fundamental information about aspiration mobility spectrometry.Not available.
Subject: analyyttinen kemia
Rights: This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.


Files in this item

Total number of downloads: Loading...

Files Size Format View
developm.pdf 4.469Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record