Quantifying the interactions between biomimetic biomaterials - collagen I, collagen IV, laminin 521 and cellulose nanofibrils - by colloidal probe microscopy

Show full item record



Permalink

http://hdl.handle.net/10138/291876

Citation

Nugroho , R W N , Harjumäki , R , Zhang , X , Lou , Y-R , Yliperttula , M , Valle-Delgado , J J & Österberg , M 2019 , ' Quantifying the interactions between biomimetic biomaterials - collagen I, collagen IV, laminin 521 and cellulose nanofibrils - by colloidal probe microscopy ' , Colloids and Surfaces B: Biointerfaces , vol. 173 , pp. 571-580 . https://doi.org/10.1016/j.colsurfb.2018.09.073

Title: Quantifying the interactions between biomimetic biomaterials - collagen I, collagen IV, laminin 521 and cellulose nanofibrils - by colloidal probe microscopy
Author: Nugroho, Robertus Wahyu N.; Harjumäki, Riina; Zhang, Xue; Lou, Yan-Ru; Yliperttula, Marjo; Valle-Delgado, Juan Jose; Österberg, Monika
Contributor organization: Tissue engineering for drug research
Division of Pharmaceutical Biosciences
Faculty of Pharmacy
Drug Research Program
Biopharmaceutics Group
Date: 2019-01-01
Language: eng
Number of pages: 10
Belongs to series: Colloids and Surfaces B: Biointerfaces
ISSN: 0927-7765
DOI: https://doi.org/10.1016/j.colsurfb.2018.09.073
URI: http://hdl.handle.net/10138/291876
Abstract: Biomaterials of different nature have been and are widely studied for various biomedical applications. In many cases, biomaterial assemblies are designed to mimic biological systems. Although biomaterials have been thoroughly characterized in many aspects, not much quantitative information on the molecular level interactions between different biomaterials is available. That information is very important, on the one hand, to understand the properties of biological systems and, on the other hand, to develop new composite biomaterials for special applications. This work presents a systematic, quantitative analysis of self- and cross-interactions between films of collagen I (Col I), collagen IV (Col IV), laminin (LN-521), and cellulose nanofibrils (CNF), that is, biomaterials of different nature and structure that either exist in biological systems (e.g., extracellular matrices) or have shown potential for 3D cell culture and tissue engineering. Direct surface forces and adhesion between biomaterials-coated spherical micro-particles and flat substrates were measured in phosphate-buffered saline using an atomic force microscope and the colloidal probe technique. Different methods (Langmuir-Schaefer deposition, spin-coating, or adsorption) were applied to completely coat the flat substrates and the spherical micro particles with homogeneous biomaterial films. The adhesion between biomaterials films increased with the time that the films were kept in contact. The strongest adhesion was observed between Col IV films, and between Col IV and LN-521 films after 30 s contact time. In contrast, low adhesion was measured between CNF films, as well as between CNF and LN-521 films. Nevertheless, a good adhesion between CNF and collagen films (especially Col I) was observed. These results increase our understanding of the structure of biological systems and can support the design of new matrices or scaffolds where different biomaterials are combined for diverse biological or medical applications.
Subject: Collagen
Laminin
Cellulose nanofibrils
Surface forces
Adhesion
AFM-colloidal probe technique
ATOMIC-FORCE MICROSCOPE
MECHANICAL-PROPERTIES
CELL
MODEL
MICROENVIRONMENT
HYDROGEL
FILMS
PROTEOGLYCAN
ORGANIZATION
MOLECULES
116 Chemical sciences
216 Materials engineering
317 Pharmacy
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
1_2.0_S0927776518306854_main.pdf 2.831Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record