Naming polyhedra by general face-spirals - Theory and applications to fullerenes and other polyhedral molecules

Show full item record



Permalink

http://hdl.handle.net/10138/294721

Citation

Wirz , L N , Schwerdtfeger , P & Avery , J E 2018 , ' Naming polyhedra by general face-spirals - Theory and applications to fullerenes and other polyhedral molecules ' , Fullerenes, Nanotubes, and Carbon Nanostructures , vol. 26 , no. 10 , pp. 607-630 . https://doi.org/10.1080/1536383X.2017.1388231

Title: Naming polyhedra by general face-spirals - Theory and applications to fullerenes and other polyhedral molecules
Author: Wirz, Lukas N.; Schwerdtfeger, Peter; Avery, James E.
Contributor: University of Helsinki, Department of Chemistry
Date: 2018
Language: eng
Number of pages: 24
Belongs to series: Fullerenes, Nanotubes, and Carbon Nanostructures
ISSN: 1536-383X
URI: http://hdl.handle.net/10138/294721
Abstract: We present a general face-spiral algorithm for cubic polyhedral graphs (including fullerenes and fulleroids), and extend it to the full class of all polyhedral graphs by way of the leapfrog transform. This yields compact canonical representations of polyhedra with a simple and intuitive geometrical interpretation, well suited for use by both computers and humans. Based on the algorithm, we suggest a unique, unambiguous, and simple notation for canonical naming of polyhedral graphs, up to automorphism, from which the graph is easily reconstructed. From this, we propose a practical nomenclature for all polyhedral molecules, and an especially compact form for the special class of fullerenes. A unique numbering of vertices is obtained as a byproduct of the spiral algorithm. This is required to denote modifications of the parent cage in IUPAC naming schemes. Similarly, the symmetry group of the molecule can be found together with the canonical general spiral at negligible cost. The algorithm is fully compatible with the classical spiral algorithm developed by Manolopoulos for fullerenes, i.e., classical spirals are accepted as input, and spiralable graphs lead to identical output. We prove that the algorithm is correct and complete.The worst case runtime complexity is for general N-vertex polyhedral graphs, with J the sum of all jump lengths. When the number of faces of any particular size is bounded by a constant, such as the case for fullerenes, this reduces to . We have calculated canonical general spirals for all 2,157,751,423 fullerene isomers from C-20 to C-200, as well as for all fullerene graphs that require jumps up to C-400. Further, we have calculated canonical general spirals for large fullerenes with few or no classical spirals: all the Goldberg-Coxeter transforms up to C-50,C-000 of the the non-spiralable chiral T-C-380, D-3-C-384, D-3-C-440, and D-3-C-672 fullerenes, and for assorted fullerenes with no pentagon spiral starts. We verify exhaustively that the algorithm is linear for all the 2.7x10(12) fullerene isomers up to C-400, and show that this holds also for 11,413 large GC-transform fullerenes up to C-50,C-000. On the used hardware, each single general spiral took about Nx200ns to produce for a C-N fullerene, and the canonical general spiral was found in Nx22s-32s. Hence, we claim the algorithm to be efficient even for very large polyhedra.The algorithm is implemented in our program package Fullerene. In addition, the source code for a reference implementation of our proposed nomenclature for polyhedral molecules can be downloaded from http://erda.ku.dk/vgrid/Polyhedra/spirals/.
Subject: Polyhedra
general face-spirals
fullerenes
polydedral molecules
NOMENCLATURE
GRAPHS
CODES
116 Chemical sciences
114 Physical sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
gs_paper_fncn.pdf 7.815Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record