Litter Inhibitory Effects on Soil Microbial Biomass, Activity, and Catabolic Diversity in Two Paired Stands of Robinia pseudoacacia L. and Pinus nigra Arn.

Show full item record



Permalink

http://hdl.handle.net/10138/298356

Citation

De Marco , A , Esposito , F , Berg , B , Zarrelli , A & De Santo , A V 2018 , ' Litter Inhibitory Effects on Soil Microbial Biomass, Activity, and Catabolic Diversity in Two Paired Stands of Robinia pseudoacacia L. and Pinus nigra Arn. ' , Forests , vol. 9 , no. 12 , 766 . https://doi.org/10.3390/f9120766

Title: Litter Inhibitory Effects on Soil Microbial Biomass, Activity, and Catabolic Diversity in Two Paired Stands of Robinia pseudoacacia L. and Pinus nigra Arn.
Author: De Marco, Anna; Esposito, Fabrizio; Berg, Björn; Zarrelli, Armando; De Santo, Amalia Virzo
Contributor: University of Helsinki, Department of Forest Sciences
Date: 2018-12
Language: eng
Number of pages: 19
Belongs to series: Forests
ISSN: 1999-4907
URI: http://hdl.handle.net/10138/298356
Abstract: Research Highlights: Plant cover drives the activity of the microbial decomposer community and affects carbon (C) sequestration in the soil. Despite the relationship between microbial activity and C sequestration in the soil, potential inhibition of soil microbial activity by plant cover has received little attention to date. Background and Objectives: Differences in soil microbial activity between two paired stands on soil at a very early stage of formation and a common story until afforestation, can be traced back to the plant cover. We hypothesized that in a black locust (Robinia pseudoacacia L.) stand the high-quality leaf litter of the tree, and that of the blackberry (Rubus fruticosus L.) understory had an inhibitory effect on soil microbial community resulting in lower mineralization of soil organic matter compared to the paired black pine (Pinus nigra Arn.) stand. Materials and Methods: We estimated potential mineralization rates (MR), microbial (MB), and active fungal biomass (AFB) of newly-shed litter, forest floor, and mineral soil. We tested the effects of litters' water extracts on soil MR, MB, AFB and its catabolic response profile (CRP). Results: Newly-shed litter of black locust had higher MR than that of blackberry and black pine; MR, MB, and AFB were higher in forest floor and in mineral soil under black pine than under black locust. Water extracts of black locust and blackberry litter had a negative effect on the amount, activity of microorganisms, and CRP. Conclusions: The results demonstrate the potential for black locust and blackberry litter to have a marked inhibitory effect on decomposer microorganisms that, in turn, reduce organic matter mineralization with possible consequences at the ecosystem level, by increasing C sequestration in mineral soil.
Subject: black locust
blackberry
black pine
litter N
P
Mn
litter organic components
(13)CPMAS NMR
H-1 NMR
TREE SPECIES INFLUENCE
CARBON SEQUESTRATION
ORGANIC-ACIDS
BLACK LOCUST
BOREAL
DECOMPOSITION
TEMPERATE
CONSTITUENTS
PHENOLICS
COMMUNITY
4112 Forestry
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
forests_09_12_00766.pdf 2.158Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record