Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk

Show full item record



Permalink

http://hdl.handle.net/10138/299088

Citation

Yang , Y , Wu , L , Shu , X , Lu , Y , Shu , X-O , Cai , Q , Beeghly-Fadiel , A , Li , B , Ye , F , Berchuck , A , Anton-Culver , H , Banerjee , S , Benitez , J , Bjorge , L , Brenton , J D , Butzow , R , Campbell , I G , Chang-Claude , J , Chen , K , Cook , L S , Cramer , D W , defazio , A , Dennis , J , Doherty , J A , Doerk , T , Eccles , D M , Edwards , D V , Fasching , P A , Fortner , R T , Gayther , S A , Giles , G G , Glasspool , R M , Goode , E L , Goodman , M T , Gronwald , J , Harris , H R , Heitz , F , Hildebrandt , M A , Hogdall , E , Hogdall , C K , Huntsman , D G , Kar , S P , Karlan , B Y , Kelemen , L E , Kiemeney , L A , Kjaer , S K , Koushik , A , Lambrechts , D , Le , N D , Levine , D A , Massuger , L F , Matsuo , K , May , T , McNeish , I A , Menon , U , Modugno , F , Monteiro , A N , Moorman , P G , Moysich , K B , Ness , R B , Nevanlinna , H , Olsson , H , Onland-Moret , N C , Park , S K , Paul , J , Pearce , C L , Pejovic , T , Phelan , C M , Pike , M C , Ramus , S J , Riboli , E , Rodriguez-Antona , C , Romieu , I , Sandler , D P , Schildkraut , J M , Setiawan , V W , Shan , K , Siddiqui , N , Sieh , W , Stampfer , M J , Sutphen , R , Swerdlow , A J , Szafron , L M , Teo , S H , Tworoger , S S , Tyrer , J P , Webb , P M , Wentzensen , N , White , E , Willett , W C , Wolk , A , Woo , Y L , Wu , A H , Yan , L , Yannoukakos , D , Chenevix-Trench , G , Sellers , T A , Pharoah , P D P , Zheng , W & Long , J 2019 , ' Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk ' , Cancer Research , vol. 79 , no. 3 , pp. 505-517 . https://doi.org/10.1158/0008-5472.CAN-18-2726

Title: Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk
Author: Yang, Yaohua; Wu, Lang; Shu, Xiang; Lu, Yingchang; Shu, Xiao-Ou; Cai, Qiuyin; Beeghly-Fadiel, Alicia; Li, Bingshan; Ye, Fei; Berchuck, Andrew; Anton-Culver, Hoda; Banerjee, Susana; Benitez, Javier; Bjorge, Line; Brenton, James D.; Butzow, Ralf; Campbell, Ian G.; Chang-Claude, Jenny; Chen, Kexin; Cook, Linda S.; Cramer, Daniel W.; defazio, Anna; Dennis, Joe; Doherty, Jennifer A.; Doerk, Thilo; Eccles, Diana M.; Edwards, Digna Velez; Fasching, Peter A.; Fortner, Renee T.; Gayther, Simon A.; Giles, Graham G.; Glasspool, Rosalind M.; Goode, Ellen L.; Goodman, Marc T.; Gronwald, Jacek; Harris, Holly R.; Heitz, Florian; Hildebrandt, Michelle A.; Hogdall, Estrid; Hogdall, Claus K.; Huntsman, David G.; Kar, Siddhartha P.; Karlan, Beth Y.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kjaer, Susanne K.; Koushik, Anita; Lambrechts, Diether; Le, Nhu D.; Levine, Douglas A.; Massuger, Leon F.; Matsuo, Keitaro; May, Taymaa; McNeish, Iain A.; Menon, Usha; Modugno, Francesmary; Monteiro, Alvaro N.; Moorman, Patricia G.; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Olsson, Hakan; Onland-Moret, N. Charlotte; Park, Sue K.; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Phelan, Catherine M.; Pike, Malcolm C.; Ramus, Susan J.; Riboli, Elio; Rodriguez-Antona, Cristina; Romieu, Isabelle; Sandler, Dale P.; Schildkraut, Joellen M.; Setiawan, Veronica W.; Shan, Kang; Siddiqui, Nadeem; Sieh, Weiva; Stampfer, Meir J.; Sutphen, Rebecca; Swerdlow, Anthony J.; Szafron, Lukasz M.; Teo, Soo Hwang; Tworoger, Shelley S.; Tyrer, Jonathan P.; Webb, Penelope M.; Wentzensen, Nicolas; White, Emily; Willett, Walter C.; Wolk, Alicja; Woo, Yin Ling; Wu, Anna H.; Yan, Li; Yannoukakos, Drakoulis; Chenevix-Trench, Georgia; Sellers, Thomas A.; Pharoah, Paul D. P.; Zheng, Wei; Long, Jirong
Contributor organization: HUSLAB
Department of Pathology
Medicum
HUS Gynecology and Obstetrics
Department of Obstetrics and Gynecology
Clinicum
Date: 2019-02-01
Language: eng
Number of pages: 13
Belongs to series: Cancer Research
ISSN: 0008-5472
DOI: https://doi.org/10.1158/0008-5472.CAN-18-2726
URI: http://hdl.handle.net/10138/299088
Abstract: DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P <7.94 x 10(-7). Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. Significance: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
Subject: SUSCEPTIBILITY LOCI
WIDE ASSOCIATION
DISEASE
MAPT
PROTEIN
TISSUE
GWAS
IDENTIFICATION
VARIANTS
THERAPY
3122 Cancers
Peer reviewed: Yes
Rights: unspecified
Usage restriction: openAccess
Self-archived version: publishedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
Genetic_Data_from_Nearly_63_000_Women.pdf 364.0Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record