Accounting for heteroscedasticity and censoring in chromosome partitioning analyses

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/299699

Citation

Kemppainen , P & Husby , A 2018 , ' Accounting for heteroscedasticity and censoring in chromosome partitioning analyses ' , Evolution Letters , vol. 2 , no. 6 , pp. 599-609 . https://doi.org/10.1002/evl3.88

Titel: Accounting for heteroscedasticity and censoring in chromosome partitioning analyses
Författare: Kemppainen, Petri; Husby, Arild
Upphovmannens organisation: External Funding
Ecological Genetics Research Unit
Datum: 2018-12
Språk: eng
Sidantal: 11
Tillhör serie: Evolution Letters
ISSN: 2056-3744
DOI: https://doi.org/10.1002/evl3.88
Permanenta länken (URI): http://hdl.handle.net/10138/299699
Abstrakt: A fundamental assumption in quantitative genetics is that traits are controlled by many loci of small effect. Using genomic data, this assumption can be tested using chromosome partitioning analyses, where the proportion of genetic variance for a trait explained by each chromosome (h(c)(2)), is regressed on its size. However, as h(c)(2)-estimates are necessarily positive (censoring) and the variance increases with chromosome size (heteroscedasticity), two fundamental assumptions of ordinary least squares (OLS) regression are violated. Using simulated and empirical data we demonstrate that these violations lead to incorrect inference of genetic architecture. The degree of bias depends mainly on the number of chromosomes and their size distribution and is therefore specific to the species; using published data across many different species we estimate that not accounting for this effect overall resulted in 28% false positives. We introduce a new and computationally efficient resampling method that corrects for inflation caused by heteroscedasticity and censoring and that works under a large range of dataset sizes and genetic architectures in empirical datasets. Our new method substantially improves the robustness of inferences from chromosome partitioning analyses.
Subject: Chromosome partitioning
heritability
infinitesimal model
genomic relatedness
GCTA
SNP heritability
GENOME-WIDE ASSOCIATION
GENETIC ARCHITECTURE
MISSING HERITABILITY
QUANTITATIVE TRAITS
COMMON SNPS
CHALLENGES
SCHIZOPHRENIA
PROPORTION
DISSECTION
SIZE
219 Environmental biotechnology
Referentgranskad: Ja
Licens: cc_by
Användningsbegränsning: openAccess
Parallelpublicerad version: publishedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Kemppainen_et_al_2018_Evolution_Letters.pdf 649.8Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post