PANINI : Pangenome Neighbour Identification for Bacterial Populations

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/302237

Citation

Abudahab , K , Prada , J M , Yang , Z , Bentley , S D , Croucher , N J , Corander , J & Aanensen , D M 2019 , ' PANINI : Pangenome Neighbour Identification for Bacterial Populations ' , Microbial Genomics , vol. 5 , no. 4 , 000220 . https://doi.org/10.1099/mgen.0.000220

Titel: PANINI : Pangenome Neighbour Identification for Bacterial Populations
Författare: Abudahab, Khalil; Prada, Joaquin M.; Yang, Zhirong; Bentley, Stephen D.; Croucher, Nicholas J.; Corander, Jukka; Aanensen, David M.
Medarbetare: University of Helsinki, Helsinki Institute for Information Technology
University of Helsinki, Helsinki Institute for Information Technology
Datum: 2019-04
Språk: eng
Sidantal: 10
Tillhör serie: Microbial Genomics
ISSN: 2057-5858
Permanenta länken (URI): http://hdl.handle.net/10138/302237
Abstrakt: The standard workhorse for genomic analysis of the evolution of bacterial populations is phylogenetic modelling of mutations in the core genome. However, a notable amount of information about evolutionary and transmission processes in diverse populations can be lost unless the accessory genome is also taken into consideration. Here, we introduce PANINI (Pangenome Neighbour Identification for Bacterial Populations), a computationally scalable method for identifying the neighbours for each isolate in a data set using unsupervised machine learning with stochastic neighbour embedding based on the t-SNE (t-distributed stochastic neighbour embedding) algorithm. PANINI is browser-based and integrates with the Microreact platform for rapid online visualization and exploration of both core and accessory genome evolutionary signals, together with relevant epidemiological, geographical, temporal and other metadata. Several case studies with single- and multi-clone pneumococcal populations are presented to demonstrate the ability to identify biologically important signals from gene content data. PANINI is available at http://panini.pathogen.watch and code at http://gitlab.com/cgps/panini.
Subject: pangenome
microbial population genomics
machine learning
web application
STREPTOCOCCUS-PNEUMONIAE
EVOLUTION
111 Mathematics
318 Medical biotechnology
Licens:


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
mgen000220.pdf 7.854Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post