Metristen struktuurien Scottin lauseet

Show simple item record

dc.contributor Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta fi
dc.contributor University of Helsinki, Faculty of Science en
dc.contributor Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten sv
dc.contributor.author Puljujärvi, Joni
dc.date.issued 2019
dc.identifier.uri URN:NBN:fi:hulib-201905292225
dc.identifier.uri http://hdl.handle.net/10138/302308
dc.description.abstract Työssä esitellään kaksi erilaista ensimmäisen kertaluvun logiikan laajennosta – infinitaarinen logiikka L_{\omega_1\omega} sekä jatkuva-arvoinen logiikka – ja todistetaan näitä yhdistävä tulos, joka on klassisen malliteorian perustuloksen yleistys metrisille struktuureille. Ensimmäisessä luvussa käydään läpi perusteita infinitaarisesta logiikasta L_{\kappa\omega}, joka sallii syntaksissaan äärettömän pitkät konjunktiot ja disjunktiot, sekä esitellään pintapuolisesti teoriaa, joka johtaa klassiseen Scottin isomorfialauseeseen. Scottin isomorfialause sanoo, että numeroituvan aakkoston numeroituva struktuuri on karakterisoitavissa isomorfiaa vaille logiikan L_{\omega_1\omega} lauseella. Tätä lausetta kutsutaan struktuurin Scottin lauseeksi. Toisessa luvussa perehdytään metristen struktuurien sekä jatkuva-arvoisen logiikan perusteoriaan. Metrinen struktuuri on metriseen avaruuteen puhtaan joukon sijaan perustuva struktuuri, joka käsitteenä sieppaa paljon klassista struktuuria paremmin esimerkiksi monet analyysissä esiintyvät rakenteet. Näissä struktuureissa predikaatit ovat relaatioiden sijaan tasaisesti jatkuvia ja rajoitettuja funktioita struktuurin n-jonoilta reaaliluvuille. Jatkuva-arvoinen logiikka on metristen struktuurien tutkimiseen soveltuva logiikka, jossa kaavat ovat tasaisesti jatkuvia ja rajoitettuja reaaliarvoisia funktioita. Konnektiiveina toimivat jatkuvat funktiot, kvanttoreina infimum ja supremum, ja atomikaavojen virkaa toimittavat pisteiden välinen etäisyys sekä predikaatit. Kolmannessa luvussa esitellään jatkuva-arvoinen versio logiikasta L_{\omega_1\omega} sekä metristen struktuurien niin kutsutut edestakaisetäisyydet, jotka ovat jatkuva-arvoinen analogia dynaamisille Ehrenfeuchtin–Fraïssén peleille. Edestakaisetäisyyksien teoriaa kehitetään riittävän pitkälle, jotta voidaan konstruoida metriset versiot struktuurien Scottin lauseista. Lopuksi todistetaan, että nämä lauseet todella karakterisoivat struktuurin isomorfiaa vaille, mikä ei metrisessä tapauksessa ole yhtä ilmeistä perusmääritelmistä kuin klassisessa tapauksessa vaan vaatii lisätyötä. fi
dc.language.iso fin
dc.publisher Helsingin yliopisto fi
dc.publisher University of Helsinki en
dc.publisher Helsingfors universitet sv
dc.title Metristen struktuurien Scottin lauseet fi
dc.type.ontasot pro gradu -tutkielmat fi
dc.type.ontasot master's thesis en
dc.type.ontasot pro gradu-avhandlingar sv
dc.subject.discipline Matematiikka und
dct.identifier.urn URN:NBN:fi:hulib-201905292225

Files in this item

Total number of downloads: Loading...

Files Size Format View
Puljujarvi_Joni_Pro_gradu_2019.pdf 333.8Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record