Do airborne laser scanning biomass prediction models benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes?

Show simple item record

dc.contributor University of Helsinki, Institute for Atmospheric and Earth System Research (INAR) en
dc.contributor University of Helsinki, Helsinki Institute of Sustainability Science (HELSUS) en
dc.contributor University of Helsinki, Earth Change Observation Laboratory (ECHOLAB) en
dc.contributor University of Helsinki, Helsinki Institute of Sustainability Science (HELSUS) en
dc.contributor.author Heiskanen, Janne
dc.contributor.author Adhikari, Hari
dc.contributor.author Piiroinen, Rami
dc.contributor.author Packalen, Petteri
dc.contributor.author Pellikka, Petri K. E.
dc.date.accessioned 2019-06-12T11:46:03Z
dc.date.available 2019-06-12T11:46:03Z
dc.date.issued 2019-09
dc.identifier.citation Heiskanen , J , Adhikari , H , Piiroinen , R , Packalen , P & Pellikka , P K E 2019 , ' Do airborne laser scanning biomass prediction models benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes? ' , International Journal of Applied Earth Observation and Geoinformation , vol. 81 , pp. 176-185 . https://doi.org/10.1016/j.jag.2019.05.017 en
dc.identifier.issn 0303-2434
dc.identifier.other PURE: 124890666
dc.identifier.other PURE UUID: b5d7fb47-89ea-4e57-9401-e7bfb609cd54
dc.identifier.other WOS: 000472988200016
dc.identifier.other ORCID: /0000-0002-9089-3249/work/66563684
dc.identifier.uri http://hdl.handle.net/10138/302808
dc.description.abstract Airborne laser scanning (ALS) is considered as the most accurate remote sensing data for the predictive modelling of AGB. However, tropical landscapes experiencing land use changes are typically heterogeneous mosaics of various land cover types with high tree species richness and trees outside forests, making them challenging environments even for ALS. Therefore, combining ALS data with other remote sensing data, or stratification by land cover type could be particularly beneficial in terms of modelling accuracy in such landscapes. Our objective was to test if spectral-temporal metrics from the Landsat time series (LTS), simultaneously acquired hyperspectral (HS) data, or stratification to the forest and non-forest classes improves accuracy of the AGB modelling across an Afromontane landscape in Kenya. The combination of ALS and HS data improved the cross-validated RMSE from 51.5 Mg ha−1 (42.7%) to 47.7 Mg ha−1 (39.5%) in comparison to the use of ALS data only. Furthermore, the combination of ALS data with LTS and HS data improved accuracies of the models for the forest and non-forest classes, and the overall best results were achieved when using ALS and HS data with stratification (RMSE 40.0 Mg ha−1, 33.1%). We conclude that ALS data alone provides robust models for AGB mapping across tropical mosaic landscapes, even without stratification. However, ALS and HS data together, and additional forest classification for stratification, can improve modelling accuracy considerably in similar, tree species rich areas. en
dc.format.extent 10
dc.language.iso eng
dc.relation.ispartof International Journal of Applied Earth Observation and Geoinformation
dc.rights en
dc.subject 1171 Geosciences en
dc.title Do airborne laser scanning biomass prediction models benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes? en
dc.type Article
dc.description.version Peer reviewed
dc.identifier.doi https://doi.org/10.1016/j.jag.2019.05.017
dc.type.uri info:eu-repo/semantics/other
dc.type.uri info:eu-repo/semantics/publishedVersion
dc.contributor.pbl
dc.contributor.pbl
dc.contributor.pbl
dc.contributor.pbl
dc.contributor.pbl

Files in this item

Total number of downloads: Loading...

Files Size Format View
1_s2.0_S0303243419303459_main.pdf 7.880Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record