An Open-Loop Receiver Architecture for Monitoring of Ionospheric Scintillations by Means of GNSS Signals

Show simple item record

dc.contributor.author Linty, Nicola
dc.contributor.author Dovis, Fabio
dc.date.accessioned 2019-06-26T12:47:41Z
dc.date.available 2019-06-26T12:47:41Z
dc.date.issued 2019
dc.identifier.issn 2076-3417
dc.identifier.uri http://hdl.handle.net/10138/303501
dc.description.abstract The quality of positioning services based on Global Navigation Satellite Systems (GNSS) is improving at a fast pace, driven by the strict requirements of a plethora of new applications on accuracy, precision and reliability of the services. Nevertheless, ionospheric errors still bound the achievable performance and better mitigation techniques must be devised. In particular, the harmful effect due to non-uniform distribution of the electron density that causes amplitude and phase variation of the GNSS signal, usually named as scintillation effects. For many high-accuracy applications, this is a threat to accuracy and reliability, and the presence of scintillation effect needs to be constantly monitored. To this purpose, traditional receivers employ closed-loop tracking architectures. In this paper, we investigate an alternative architecture and a related metric based on the statistical processing of the received signal, after a code-wipe off and a noise reduction phase. The new metric is based on the analysis of the statistical features of the conditioned signal, and it brings the same information of the S4 index, normally estimated by means of closed-loop receivers. This new metric can be obtained at a higher rate as well as in the case of strong scintillations when a closed-loop receiver would fail the tracking of the GNSS signals. fi
dc.language.iso en fi
dc.publisher MDPI fi
dc.relation.ispartofseries Applied Sciences fi
dc.subject GNSS fi
dc.subject ionospheric scintillations fi
dc.subject open loop fi
dc.title An Open-Loop Receiver Architecture for Monitoring of Ionospheric Scintillations by Means of GNSS Signals fi
dc.type Magazine Article fi
dc.format.volume 9 fi
dc.format.issue 12 fi

Files in this item

Total number of downloads: Loading...

Files Size Format View
2019Linty16735.pdf 1.850Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record