Efficient Autotuning of Hyperparameters in Approximate Nearest Neighbor Search

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/303722

Lähdeviite

Jääsaari , E , Hyvönen , V & Roos , T 2019 , Efficient Autotuning of Hyperparameters in Approximate Nearest Neighbor Search . in Advances in Knowledge Discovery and Data Mining : 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part II . Lecture Notes in Artificial Intelligence , vol. 11440 , Springer , Cham , pp. 590-602 , Pacific-Asia Conference on Knowledge Discovery and Data Mining 2019 , Macao , China , 14/04/2019 . https://doi.org/10.1007/978-3-030-16145-3_46

Julkaisun nimi: Efficient Autotuning of Hyperparameters in Approximate Nearest Neighbor Search
Tekijä: Jääsaari, Elias; Hyvönen, Ville; Roos, Teemu
Tekijän organisaatio: Department of Computer Science
Helsinki Institute for Information Technology
Information, Complexity and Learning research group / Teemu Roos
Complex Systems Computation Group
Julkaisija: Springer
Päiväys: 2019-04-17
Kieli: eng
Sivumäärä: 13
Kuuluu julkaisusarjaan: Advances in Knowledge Discovery and Data Mining
Kuuluu julkaisusarjaan: Lecture Notes in Artificial Intelligence
ISBN: 978-3-030-16144-6
978-3-030-16145-3
ISSN: 0302-9743
DOI-tunniste: https://doi.org/10.1007/978-3-030-16145-3_46
URI: http://hdl.handle.net/10138/303722
Tiivistelmä: Approximate nearest neighbor algorithms are used to speed up nearest neighbor search in a wide array of applications. However, current indexing methods feature several hyperparameters that need to be tuned to reach an acceptable accuracy–speed trade-off. A grid search in the parameter space is often impractically slow due to a time-consuming index-building procedure. Therefore, we propose an algorithm for automatically tuning the hyperparameters of indexing methods based on randomized space-partitioning trees. In particular, we present results using randomized k-d trees, random projection trees and randomized PCA trees. The tuning algorithm adds minimal overhead to the index-building process but is able to find the optimal hyperparameters accurately. We demonstrate that the algorithm is significantly faster than existing approaches, and that the indexing methods used are competitive with the state-of-the-art methods in query time while being faster to build.
Avainsanat: 113 Computer and information sciences
Vertaisarvioitu: Kyllä
Pääsyrajoitteet: openAccess
Rinnakkaistallennettu versio: acceptedVersion


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
Jaasaari_Hyvonen_2019_Efficient_Autotuning.pdf 402.4KB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot