Partially hidden Markov models for privacy-preserving modeling of indoor trajectories

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/304289

Citation

Jitta , A & Klami , A 2017 , ' Partially hidden Markov models for privacy-preserving modeling of indoor trajectories ' , Neurocomputing , vol. 266 , pp. 196-205 . https://doi.org/10.1016/j.neucom.2017.05.035

Titel: Partially hidden Markov models for privacy-preserving modeling of indoor trajectories
Författare: Jitta, Aditya; Klami, Arto
Medarbetare: University of Helsinki, Helsinki Institute for Information Technology
University of Helsinki, Department of Computer Science
Datum: 2017-11-29
Språk: eng
Sidantal: 10
Tillhör serie: Neurocomputing
ISSN: 0925-2312
Permanenta länken (URI): http://hdl.handle.net/10138/304289
Abstrakt: Markov models are natural tools for modeling trajectories, following the principle that recent location history is predictive of near-future directions. In this work we study Markov models for describing and predicting human movement in indoor spaces, with the goal of modeling the movement on a coarse scale to protect the privacy of the individuals. Modern positioning devices, however, provide location information on a much more finer scale. To utilize this additional information we develop a novel family of partially hidden Markov models that couple each observed state with an auxiliary side information vector characterizing the movement within the coarse grid cell. We implement the model as a non-parametric Bayesian model and demonstrate it on real-world trajectory data collected in a hypermarket.
Subject: 112 Statistics and probability
Hierarchical Dirichlet process
Markov models
Movement trajectories
Nonparametric Bayesian inference
Licens:


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Manuscript_revised.pdf 436.8Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post