Projecting named entity recognizers without annotated or parallel corpora

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/306000

Citation

Hou , J , Koppatz , M , Hoya Quecedo , J M & Yangarber , R 2019 , Projecting named entity recognizers without annotated or parallel corpora . in M Hartmann & B Plank (eds) , 22nd Nordic Conference on Computational Linguistics (NoDaLiDa) : Proceedings of the Conference . Linköping Electronic Conference Proceedings , no. 67 , NEALT Proceedings Series , no. 42 , Linköping University Electronic Press , Linköping , pp. 232-241 , Nordic Conference on Computational Linguistics , Turku , Finland , 30/09/2019 .

Titel: Projecting named entity recognizers without annotated or parallel corpora
Författare: Hou, Jue; Koppatz, Maximilian; Hoya Quecedo, Jose María; Yangarber, Roman
Medarbetare: Hartmann, Mareike
Plank, Barbara
Upphovmannens organisation: Department of Computer Science
Department of Digital Humanities
Helsinki Inequality Initiative (INEQ)
Utgivare: Linköping University Electronic Press
Datum: 2019-10
Språk: eng
Sidantal: 10
Tillhör serie: 22nd Nordic Conference on Computational Linguistics (NoDaLiDa)
Tillhör serie: Linköping Electronic Conference Proceedings - NEALT Proceedings Series
ISBN: 978-91-7929-995-8
ISSN: 1650-3686
Permanenta länken (URI): http://hdl.handle.net/10138/306000
Abstrakt: Named entity recognition (NER) is a well-researched task in the field of NLP, which typically requires large annotated corpora for training usable models. This is a problem for languages which lack large annotated corpora, such as Finnish. We propose an approach to create a named entity recognizer with no annotated or parallel documents, by leveraging strong NER models that exist for English. We automatically gather a large amount of chronologically matched data in two languages, then project named entity annotations from the English documents onto the Finnish ones, by resolving the matches with limited linguistic rules. We use this “artificially” annotated data to train a BiLSTM-CRF model. Our results show that this method can produce annotated instances with high precision, and the resulting model achieves state-of-the-art performance.
Subject: 113 Computer and information sciences
6121 Languages
Referentgranskad: Ja
Licens: cc_by
Användningsbegränsning: openAccess
Parallelpublicerad version: publishedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
W19_6124.pdf 184.6Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post