The two-weight inequality for the Hilbert transform with general measures

Show simple item record

dc.contributor University of Helsinki, Tuomas Hytönen / Principal Investigator en
dc.contributor.author Hytönen, Tuomas P.
dc.date.accessioned 2019-11-19T10:23:01Z
dc.date.available 2019-11-19T10:23:01Z
dc.date.issued 2018-09
dc.identifier.citation Hytönen , T P 2018 , ' The two-weight inequality for the Hilbert transform with general measures ' , Proceedings of the London Mathematical Society , vol. 117 , no. 3 , pp. 483–526 . https://doi.org/10.1112/plms.12136 en
dc.identifier.issn 0024-6115
dc.identifier.other PURE: 121877083
dc.identifier.other PURE UUID: fdbc5288-942a-4f54-895c-741de736f178
dc.identifier.other Scopus: 85045224160
dc.identifier.other WOS: 000443406200002
dc.identifier.uri http://hdl.handle.net/10138/307044
dc.description.abstract The two‐weight inequality for the Hilbert transform is characterized for an arbitrary pair of positive Radon measures σ and w on ℝ. In particular, the possibility of common point masses is allowed, lifting a restriction from the recent solution of the two‐weight problem by Lacey, Sawyer, Shen, and Uriarte‐Tuero. Our characterization is in terms of Sawyer‐type testing conditions and a variant of the two‐weight A2 condition, where σ and w are integrated over complementary intervals only. A key novelty of the proof is a two‐weight inequality for the Poisson integral with ‘holes’. en
dc.format.extent 44
dc.language.iso eng
dc.relation.ispartof Proceedings of the London Mathematical Society
dc.rights en
dc.subject 111 Mathematics en
dc.title The two-weight inequality for the Hilbert transform with general measures en
dc.type Article
dc.description.version Peer reviewed
dc.identifier.doi https://doi.org/10.1112/plms.12136
dc.type.uri info:eu-repo/semantics/other
dc.type.uri info:eu-repo/semantics/acceptedVersion
dc.contributor.pbl
dc.contributor.pbl

Files in this item

Total number of downloads: Loading...

Files Size Format View
1312.0843.pdf 470.6Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record